

1

2

IS 2.1
Computer Organization

3

Preface

 This material is prepared to give an overview of Computer Organization for the

Second Semester course in M.Sc. (IT) curricula. It is suitable for both hardware and

software-oriented students. To study the design details of computer organization and the

various concepts related to computer organization, this material has been prepared. The

whole material is organized into four modules each with four units. Each unit lists out the

objectives of study along with the relevant questions and suggested reading to better

understand the concepts.

Module-1: Gives an introduction to computer organization. It starts with components of

computer, computer functions, interconnection networks. It also describes main memory

operations and addressing modes.

Module-2: Introduces the basic processing unit. It starts with some fundamental

concepts. It describes movement of data and instructions execution. It also describes

performance considerations, hardwired control and microprogrammed control.

Module-3: Describes the input-output organization. It discusses different types of

accessing I/O devices. It also introduces concepts of interrupts, DMA and I/O hardware.

Module-4: Introduces the concept of system memory. It starts with basic memory

concepts. It explains semiconductor memory chips. It also explains the mechanism of

cache memory. It ends with an interesting concept called virtual memory.

 We thank everyone who helped us directly or indirectly in preparing this material.

Without their support, this material would not have been a reality.

4

Karnataka State Open University
Mukthagangothri, Mysore – 570 006

Second Semester M.Sc in Information Science

Data Base Management Systems

Module 1 Introduction to Computer Organization Page no

Unit – 1 COMPUTER ORGANIZATION AND ARCHITECTURE 06-14

Unit – 2 COMPUTER STRUCTURES 15-25

Unit – 3 MAIN MEMORY OPERATIONS 26-37

Unit – 4 ADDRESSING MODES AND ASSEMBLY LANGUAGE 38-54

Module 2 Basic processing Unit

Unit – 5 FUNDAMENTAL CONCEPTS 55-68

Unit – 6 PERFORMANCE CONSIDERATIONS 69-76

Unit – 7 HARD-WIRED CONTROL 77-82

Unit – 8 MICROPROGRAMMED CONTROL 83-104

5

Module 3 Input-Output Organization

Unit – 9 INTRODUCTION TO INPUT/OUTPUT DEVICES 105-115

Unit – 10 INTERRUPTS 116-129

Unit – 11 DIRECT MEMEORY ACCESS 130-139

Unit –12 I/O HARDWARE AND STANDARD I/O INTERFACES 140-157

Module 4 System Memory

Unit – 13 BASIC CONCEPTS 158-170

Unit – 14 SEMICONDUCTOR RAM MEMORIES 171-191

Unit – 15 CACHE MEMORIES 192-210

Unit – 16 VIRTUAL MEMORIES 211-219

6

Course Design and Editorial Committee

Prof. M.|G.Krishnan Prof. Vikram Raj Urs

Vice Chancellor & Chairperson Dean (Academic) & Convener

Karnataka State Open University Karnataka State Open University

Manasagangotri, Mysore – 570 006 Manasagangotri, Mysore – 570 006

Head of the Department Course Co-Ordinator

Rashmi B.S Mr. Mahesha DM

Assistant professor & Chairman Assistant professor in Computer Science

Dos in Information Technology Dos in Computer Science

Karnataka State Open University Karnataka State Open University

Manasagangotri, Mysore – 570 006 Manasagangotri, Mysore – 570 006

Course Editor

Ms. Nandini H.M

Assistant professor of Information Technology

Dos in Information Technology

Karnataka State Open University

Manasagangotri, Mysore – 570 006

Course Writers

Smt.L.Hamsaveni

Associate Professor
Department of Studies in Computer Science

University of Mysore

Manasagangothri

Dr. Suresh

professor
Department of Studies in Computer Science

University of Mysore

Manasagangothri

Publisher

Registrar

Karnataka State Open University

Manasagangotri, Mysore – 570 006

Developed by Academic Section, KSOU, Mysore

Karnataka State Open University, 2012

All rights reserved. No part of this work may be reproduced in any form, by mimeograph

or any other means, without permission in writing from the Karnataka State Open

University.

Further information on the Karnataka State Open University Programmes may be

obtained from the University’s Office at Manasagangotri, Mysore – 6.

Printed and Published on behalf of Karnataka State Open University, Mysore-6 by the

Registrar (Administration)

7

UNIT 1: COMPUTER ORGANIZATION AND ARCHITECTURE

Structure

1.0 Objectives

1.1 Introduction

1.2 Types of computers

1.3 Functional units

1.4 Basic operational concepts

1.5 Definition of computer organization and architecture

1.6 Summary

1.7 Key words

1.8 Answers to check your progress

1.9 Unit-end exercises and answers

1.10 Suggested readings

1.0 OBJECTIVES

At the end of this unit you will be able to

 Identify various types of computers

 Identify the functional units of a computer

 State the functions performed by each functional unit

 Discuss the interaction between the CPU and memory

 Understand the difference between Computer organization and architecture

1.1 INTRODUCTION

This unit is about the basic computer organization. It describes what a computer is, its

types, its functional components, and how does these functional components work

together as a system? It also gives you an overview of the basic operational concepts of

computers which involves the functional components such as input, output, memory,

arithmetic-logic unit and control unit. We understand the difference between Computer

8

organization and architecture. The subsequent modules will discuss in detail the

organization of each component of the system.

1.2 TYPES OF COMPUTERS

A computer is an electronic device that is capable of accepting data, process the accepted

data according to the given sequence of instructions, storing data, presenting data

according to given format and communicating data over networks.

There are two broad classes of computers based on the type of input data they accept.

They are: Analog Computers and Digital computers.

Analog Computers: Electronic devices that are capable of accepting data in analog or

time varying form for processing.

Digital computes: Electronic devices that are capable of accepting data in the digital

form for processing. These computers process the accepted data according to a given

sequence of instructions known as a program. The result of processing data is

information. The programs and the result reside in the internal storage called computer

memory.

Today, there are many types of computers that differ in size, cost, computational power

and its indented use. They are:

 Desktops computers

 Portable notebook computers

 Work stations

 Mainframes

 Super computers

Desktops Computers:

A desktop computer is a personal computer that is designed to be accommodated

conveniently on top of a typical office desk. A desktop computer typically consists of

various units such as the processor, the display monitor and input devices - usually a

keyboard and a mouse that are connected together during installation. Today, almost all

desktop computers include a built-in modem, a CD-ROM drive, a multi-gigabyte

9

magnetic storage drive. In businesses and at home, most desktop computer users can

share resources such as printers, plotters and fax machines by getting connected to a local

area network.

Portable notebook computers:

A portable notebook computer is a compact version of a personal computer with all

components of a PC packaged into a single unit which is handy and portable. Laptop is

an example for this type of computer.

Work stations:

A work station is a high computational powered personal computer having high

resolution graphics terminals and improved input-output capabilities. It often finds its use

in engineering applications and interactive graphics applications.

Mainframes:

A Main frame computer is a large data processing system used in medium and large sized

business units. It is implemented using two or more central processing units and designed

to operate at very high speeds for large volumes of data. A Mainframe is also known as

an Enterprise system.

Super Computers:

A super computer is a high-performance computing device meant for highly calculation-

intensive tasks involving problems on quantum physics, weather forecasting, climate

research, molecular modeling and physical simulations such as a rocket design or a

submarine design etc.

1.3 FUNCTIONAL UNITS

A computer in its simplest form consists of five components. They are: input, output,

memory, arithmetic and logic unit, and control unit as shown in the Figure 1.1.

10

 Figure 1.1 Functional units of a computer

The operations performed by a computer using the functional units can be summarized as

follows:

 It accepts information (program and data) through input unit and transfers it to the

memory

 Information stored in the memory is fetched, under program control, into an

arithmetic and logic unit for processing

 Processed information leaves the computer through an output unit

 The control unit controls all activities taking place inside a computer.

1.4 BASIC OPERATIONAL CONCEPTS

A program is nothing but sequence of instructions that instruct the computer to perform

some specified operation on given data. Programs reside in the main memory of the

 Input

 Arithmetic

 and

 Logic unit

 Output

 Control

 unit

I / O CPU

Memory

11

computer. In-order to perform the specified operations, the instructions are brought from

memory into the processor. The Figure 1.2 describes the connections between the CPU

and the main memory. The processor contains arithmetic and logic unit as the main

processing unit, the control unit to control and coordinate all activities in the system. It

also contains a number of registers used for various purposes (e.g., temporary storage of

data), such as the Instruction Register (IR), the Program Counter (PC), the Memory

Address Register (MAR), Memory Data Register (MDR), and the general-purpose

registers.

Figure 1.2 Connections between the CPU and the main memory.

Instruction Register (IR): contains the instruction that is currently being executed. Its

output is available to the control circuit that generates the timing signals for control of the

actual processing circuit needed to execute the instruction.

CPU

 Main Memory

MMMmemory

 MAR

MM

AR

 MDR

 PC

 IR

General
Purpose

Registers

 R0

 *

 *
 Rn

Control
unit

Arithmetic

logic unit

12

Program Counter (PC): is a register that contains the memory address of the instruction

currently being executed. During the execution of the current instruction, the content of

program counter is updated to correspond to the address of the next instruction.

Memory Address Register (MAR): holds the address of the memory location to or

from which data is to be transferred.

Memory Data Register (MDR): contains the data to be written into or read-out of the

addressed memory location.

General-purpose Registers: are used for holding data, intermediate results of

operations. They are also known as scratch-pad registers.

Let us consider some typical operating steps involving instruction fetch and execution:

 INSTRUCTION FETCH

 Program gets into the memory through an input device

 Execution of a program starts by setting the PC to point to the first instruction of the

program.

 The contents of PC are transferred to the MAR and a Read control signal is sent to the

memory

 The addressed word (here it is the first instruction of the program) is read out of

memory and loaded into the MDR

 The contents of MDR are transferred to the IR for instruction decoding

INSTRUCTION EXECUTION

 The operation field of the instruction in IR is examined to determine the type of

operation to be performed by the ALU

 The specified operation is performed by obtaining the operand(s) from the memory

locations or from GP registers.

- Fetching the operands from the memory requires sending the memory

location address to the MAR and initiating a Read cycle.

- The operand is read from the memory into the MDR and then from

MDR to the ALU.

- The ALU performs the desired operation on one or more operands

13

fetched in this manner and sends the result either to memory location or

to a GP register.

- The result is sent to MDR and the address of the location where the

result is to be stored is sent to MAR and Write cycle is initiated.

Thus, the execute cycle ends for the current instruction and the PC is incremented to

point to the next instruction for a new fetch cycle.

1.5 DEFINITION OF COMPUTER ORGANIZATION AND ARCHITECTURE

Computer architecture refers to those attributes of a system visible to a programmer, or

put another way, those attributes that have a direct impact on the logical execution of a

program. Computer organization refers to the operational units and their interconnection

that realize the architecture specification. For examples, architecture attributes include

the instruction set, the number of bits to represent various data I/O mechanisms, and

technique for addressing memory. Whereas, organization attributes include those

hardware details transparent to the programmer, such as control signals, interfaces

between the computer and peripherals, and the memory technology used.

In computer science and engineering, computer architecture is the practical art of

defining the structure and relationship of the subcomponents of a computer. As in

designing the architecture of buildings, architecture can comprise many levels of

information. Computer architecture is primarily logical, positing a conceptual system that

serves a particular purpose. Computer organization helps optimize performance-based

products.

Differences between computer organization and architecture:

Computer organization is how operational attributes are linked together and contribute to

realize the architectural specifications. Computer architecture is the architectural

attributes like physical address memory, CPU and how they should be made and made to

coordinate with each other keeping the future demands and goals in mind.

14

A computer's architecture is its abstract model and is the programmer's view in terms of

instructions, addressing modes and registers. A computer's organization expresses the

realization of the architecture. Architecture describes what the computer does and

organization describes how it does it.

Check your progress

1. Define a computer. How is it classified based on its input?

2. What are the types of computers?

3. Explain the important operations performed by a computer using the functional units.

4. What is the function of a program counter and an instruction register?

5. What is the difference between computer organization and architecture?

1.6 SUMMARY

A computer is said to be operational as a system, when its functional units are

interconnected by a group of wires called Bus. One can choose his computer system

based on his requirements. And a comfortable choice can be made depending on one’s

needs related to the cost or speed. In this unit we discussed about functional units of

computer, basic operational concepts, definition of organization and architecture.

1.7 KEYWORDS

Computer: A computer is a programmable device that receives input, stores and

manipulates data, communicates data and provides output in a suitable format.

Instruction: An explicit command given to a computer.

Register: A high speed storage element.

Program: A sequence of instructions stored in memory and processed by a processor.

Analog: data in analog or time varying form for processing.

15

Digital: data in digital or time invariant form for processing.

1.8 ANSWERS TO CHECK YOUR PROGRESS

1. 1.2

2. 1.2

3. 1.3

4. 1.4

5. 1.5

1.9 UNIT-END EXERCISES AND ANSWERS

1. How are computers classified based on their size, cost, computational power and

indented use?

2. Name the functional units of a computer and describe its functions.

3. How does the CPU interact with the main memory? Explain with necessary block

diagram.

4. Differentiate between computer organization and architecture.

Answers: SEE

1. 1.2

2. 1.3

3. 1.4

4. 1.5

1.10 SUGGESTED READINGS

1. Carl Hamacher, Zvonko Vranesic, Safwat Zaky: Computer Organization, 5
th

 Edition,

 TMH 2002.

2. William Stallings: Computer Organization and Architecture, 7
th

 Edition, PHI 2006.

3. Vincenet P. Heuring and Harry F. Jordan: Computer Systems Design and

 Architecture, 2
nd

 Edition, Pearson Education, 2004.

16

UNIT 2: COMPUTER STRUCTURES

Structure

2.0 Objectives

2.1 Introduction

2.2 Computer function

2.3 Interconnection structures

2.4 Bus interconnection

2.5 Memory locations, Addressing and Encoding of information.

2.6 Summary

2.7 Key words

2.8 Answers to check your progress

2.9 Unit-end exercises and answers

2.10 Suggested readings

2.0 OBJECTIVES

At the end of this unit you will be able to

 Computer functions

 Define a Bus

 Discuss the various Bus structures

 Memory arrangement

 Addressing and Encoding of information

2.1 INTRODUCTION

This unit is about the computer structures. It describes Computer function, their

Interconnection structures. It defines Bus interconnection. It shows how various parts of

a computer are interconnected with bus structure. It also deals with Memory locations,

Addressing and Encoding of information.

17

2.2 COMPUTER FUNCTIONS

The main function of a computer is to run programs. The computers are used today for an

almost unlimited range of applications. However, irrespective of the application for

which a computer is used we can identify a few basic functions that are performed by all

computers. All the computer applications make use of these basic functions of computers

in different ways and combinations. There are basically four basic functions of

computers. They are input, storage, processing and output. These are described below:

1. INPUT: This is receiving or accepting information from outside sources. We

input data and instructions through input devices which are keyboard, mouse,

scanner, etc. The most common way of performing input function is through the

information entered through the keyboard and the click of mouse. Of course, there

are many other types of devices for receiving such information - for example, the

web cam. Computers are also able to receive information stored in other devices

like DVD disks and pen drives. Computers are also able to receive information

from other computers and similar devices. When we use computers for automatic

control of machines and processes, computers can also receive information

directly from such equipments and processes.

2. PROCESSING: The computer processes data. This is really the core of computer

operation. The computer processes the data that is fed to the computer by various

means and the data already contained in internal memory to produce the results

that is the core of all computer applications, which is done by the Central

Processing Unit (CPU).

3. OUTPUT: After processing the data the computer gives the result as an output.

Output devices are the monitor (in the case of visual output), speakers (in the case

of audio output), printers, etc. The results of the processing are made available for

use by any user or other devices. When a computer is connected to other devices,

18

including through Internet, this output is in the form of electrical pulses. The

output data can also be recorded on to an external recording medium such as a

DVD disk.

4. STORAGE-: We can save our data for future use in the computer itself. There

are several storage devices also like removable disks, CDs, etc. The information

in the computer is stored in computer in several different ways depending on how

the information is used. For simplicity we will classify in two broad categories.

First is the memory in the central processing unit of the computer, and second is

the auxiliary memory. The auxiliary memory includes devices such as fixed hard

drives.

2.3 INTERCONNECTION STRUCTURES

A Computer consists of a set of components (CPU, I/O, memory) that communicates

with each other. Collection of paths connecting various computer components is known

as Interconnection Structures. The design of this structure will depend on the exchange

that must be made between modules. The various types of exchanges/transfers are:

Memory to CPU, CPU to Memory, I/O to CPU, CPU to I/O, I/O to or from Memory

(Direct Memory Access (DMA)).

2.4 BUS INTERCONNECTION

Bus: A Bus is a collection of wires or distinct lines meant to carry data, address and

control information. The functional components of a computer must be connected in-

order to make a system operational. The connections can be made in several ways using a

Bus.

 Data Bus: it is used for transmission of data. The number of data lines corresponds

to the number of bits in a word.

 Address Bus: it carries the address of the main memory location from where

the data can be accessed.

19

 Control Bus: it is used to indicate the direction of data transfer and to coordinate

the timing of events during the transfer.

The different functional units of a computer can be connected through a bus structure

such as:

 A Single-bus structure

 A Two-bus structure

SINGLE-BUS STRUCTURE:

 All units are connected to a single bus as shown in Figure 2.1. The bus can be used for

only one transfer at a time since only two units can actively use the bus at any given

instant of time. When multiple requests arise for the use of bus, then the Bus control lines

are used for managing it. The primary advantage of this structure is its low cost and

flexibility for attaching peripherals. But the drawback is its low operating speed. This

type of structure is mainly found in small computers such as minicomputers and

microcomputers.

Figure 2.1 Single-bus Structure

TWO-BUS STRUCTURE:

The bus is said to perform two distinct functions by connecting the I/O units with

memory and processor unit with memory. The processor interacts with the memory

through a memory bus and handles input/output functions over I/O bus. The I/O transfers

are always under the direct control of the processor, which initiates transfer and monitors

their progress until completion. The main advantage of this structure is good operating

speed but on account of more cost.

 Input

 Output

Processor

Bus

Memory

20

The Figure 2.2 shows the two-bus structure and Figure 2.3 shows the alternate

arrangement of two-bus structure.

 Figure 2.2 Two-bus Structure

AN ALTERNATIVE TWO-BUS STRUCTURE:

Here the positions of memory and processor are interchanged. I/O transfers are directly

made to or from the memory. So, special purpose processor called peripheral processor is

used for providing the necessary controls over the actual data transfer.

 Figure 2.3: An alternative Two-bus Structure

2.5 MEMORY LOCATIONS, ADDRESSES, AND INFORMATION ENCODING

We now discuss the way the programs are executed in a computer from the programmer’s

point of view. Number and character operands, as well as instructions, are stored in the

memory of a computer.

 Input

 Output

 Processor

Memory

bus

I/O bus

 Input

 Output

Memory

bus

I/O bus

 Memory

 Memory

 Processor

21

The memory consists of many millions of storage cells, each of which can store a bit of

information having the value 0 or 1. Because a single bit represents a ve ry

small amount of information, the bits are normally not handled individually. The usual

approach is to deal with them in groups of fixed size. For this purpose, the

memory is organized so that a group of m bits can be stored or retrieved in a single,

basic operation. Each group of m b i t s i s r e f e r r ed to as a wo r d o f

i n fo rm at io n , an d m i s c a l l ed t h e wo r d l en g th . Th e mem or y o f a

co mp ut e r c an b e sch em at i ca l l y r ep r e s en t ed a s a co l l e c t io n o f wo rd s

a s shown in Figure 2.4. Modern computers have word lengths that typically range from

16 to 64 bits. If the word length of a computer is 32 bits, a single word can store a 32-bit

2’s complement number or four ASCII characters, each occupying 8 bits. A unit of 8 bits

is called a byte. Accessing the memory to store or retrieve a single item of

information, either a w o r d o r a b y t e , r e q u i r e s d i s t i n c t a d d r e s s e s

f o r e a c h i t e m l o c a t i o n . I t i s customary to use numbers from 0 through

2
n
 - 1 , fo r s om e su i t ab l e va lu e s o f n , a s t h e addresses of successive locations

in the memory. The 2
n
 addresses constitute the address space of the computer, and

the memory can have up to 2
n

addressable locations. A 32-bit address creates an

address space of 2
32

 or 4G (4 Giga) locations.

22

second word

first word

n bits

last word

i th word

•
•
•

•
•
•

Figure 2.4: Main Memory Addresses

BYTE ADDRESSABILITY:

We now have three basic information quantities to deal with: the bit, byte and

word. A byte is always 8 bits, but the word length typically ranges from 16 to

64 bits. The most practical assignment is to have successive addresses refer to

successive byte. Contents of the memory locations can represent either instructions or

operands. Operands can be either numbers or characters.

 Representation of Numbers in main memory:

Consider a 32 bit pattern to represent a signed integer. Figure 2.5 shows how a number

can be stored in a 32 bit word.

32 bits

b31 b30
. . .

b1 b0

23

 Sign bit: b31 = 0 for positive numbers

 b31 = 1 for negative numbers

 Magnitude = b30 . 2
30

+ b29 . 2
29

 + + b1 . 2
1
+ b0 . 2

0

Figure 2.5: A signed integer

Magnitude can range from 0 to 2
31

 – 1 and the numbers are said to be in binary positional

notation. The above encoding format is called Signed Magnitude representation. The

other two binary representations are 1’s compliment and 2’s compliment representations.

Representation of positive numbers is the same in the three cases. The difference is only

in the negative number. In all the three methods the left most bit is the sign bit (i.e.0

represents positive number and 1 represents negative number). 2’s compliment method is

the most suitable one and is used in all modern computers.

Representation of Characters in main memory

Characters can be letters of the alphabet, decimal digits, punctuation marks etc. They are

represented by codes that are usually 6 – 8 bits long. Figure 2.6 shows how 4 characters

in ASCII can be stored in a 32 bit word.

8 bits 8 bits 8 bits 8 bits

ASCII

Character

ASCII

Character

ASCII

Character

ASCII

character

Figure: 2.6: A character

24

Representation of Instructions in main memory

A main memory word can also be used to represent an instruction. One part of the word

specifies the operation to be performed and the other part specifies operand address. Each

of these parts is called as ‘field’, represented as shown in Figure 2.7

8 bits 24 bits

Operation field Addressing information

Fig 2.7: An instruction

Here the 8 bit operation field can encode 2
8
 (256) distinct instructions.

Addressing information is given in a variety of ways. The different ways in which

operands can be named in machine instructions are called addressing modes. Memory

words whose addresses are specified by the instructions are interpreted as operands.

Whether an operand is a character or a numeric data item is determined by the operation

field of the instruction. An operand may be either shorter or longer than one word. An

operand length of 8 bit is convenient, because this size is used to encode character data.

 BIG-ENDIAN AND LITTLE ENDIAN ASSIGNMENTS

Little and big-endian are two ways of storing multibyte data-types (int, float, etc). In

little-endian machines, last byte of binary representation of the multibyte data-type is

stored first. On the other hand, in big-endian machines, first byte of binary representation

of the multibyte data-type is stored last.

Suppose integer is stored as 4 bytes (assuming integer is 2 bytes) then a variable x with

value 0×01234567 will be stored as following.

25

Check your progress

1. What are functions of a computer?

2. What are interconnection structures?

3. Explain Bus interconnection structure.

4. Explain the structure of main memory.

5. What is big-endian and little-endian?

 SUMMARY

This unit dealt with the computer structures. It described Computer functions, their

Interconnection structures. It also defined Bus interconnection. It also dealt with

Memory locations, Addressing and Encoding of information.

.

2.6 KEYWORDS

Interconnection Structures: Collection of paths connecting various computer

components.

26

Bus: A collection of wires or distinct lines meant to carry data, address and control

information.

Addressing mode: The different ways, in which operands can be named in machine

instructions.

2.7 ANSWERS TO CHECK YOUR PROGRESS

1 2.2

2 2.3

3 2.4

4 2.5

5 2.5

2.8 UNIT-END EXERCISES AND ANSWERS

5. What are different types of buses?

6. Explain various types of Bus interconnection.

7. Describe the structure of main memory.

8. With example, distinguish between big-endian and little-endian.

Answers: SEE

1. 2.4

2. 2.4

3. 2.5

4. 2.5

2.9 SUGGESTED READINGS

1. Carl Hamacher, Zvonko Vranesic, Safwat Zaky: Computer Organization, 5
th

 Edition,

 TMH 2002.

2. William Stallings: Computer Organization and Architecture, 7
th

 Edition, PHI 2006.

3. Vincenet P. Heuring and Harry F. Jordan: Computer Systems Design and

 Architecture, 2
nd

 Edition, Pearson Education, 2004.

27

UNIT 3: Main Memory Operations

Structure

3.0 Objectives

3.1 Introduction

3.2 Main memory operations

3.3 Instructions and instructions sequencing

3.4 Instruction execution and straight-line sequencing.

3.5 Condition codes.

3.6 Summary

3.7 Key words

3.8 Answers to check your progress

3.9 Unit-end exercises and answers

3.10 Suggested readings

3.0 OBJECTIVES

At the end of this unit you will be able to

 Identify main memory operations

 Explain instructions fetch and instructions execution.

 Identify various instruction formats.

 Understand different addressing techniques.

3.1 INTRODUCTION

After knowing the general concepts of computer organization and the way computer

operates, in this unit, we will see the main memory operations, various types of

instructions and instructions sequencing. It also deals with instruction execution and

straight-line sequencing, condition codes.

28

3.2 MAIN MEMORY OPERATIONS

To execute an instruction the instructions must be transferred from the main memory to

the CPU.

This is done by the CPU control circuits. Operands and results must also be moved

between the main memory and the CPU. Thus two basic operations involving the main

memory are needed namely, Load (or Fetch or Read) and Store (or Write).

Load operation: Transfers a copy of the contents of a specific memory location to the

CPU. The Word in the main memory remains unchanged. To start a Load or Fetch

operation, CPU sends the address of the desired location to the main memory and

requests to read its contents. The main memory reads the data stored at that address and

sends them to the CPU.

Store operation: Transfers a word of information from the CPU to a specific main

memory location, destroying the former contents of that location. Here the CPU sends the

address of the desired location to the main memory, together with the data to be written

to that location.

3.3 INSTRUCTIONS AND INSTRUCTION SEQUENCING

A computer must have instructions capable of performing four types of operations

1. Data transfers between the main memory and the CPU registers

2. Arithmetic and logic operations on data

3. Program sequencing and control

4. I/O transfers

Notations used:-

a) Register Transfer Notation (RTN):- Possible locations involved in transfer of

information are memory location, CPU registers or registers in the I/O subsystem. We

29

identify the names for the addresses of memory location as LOC, PLACE, A, VAR2 etc

and the names for CPU registers as R0, R5 etc. The contents of a location or a register are

denoted by placing the corresponding name between square brackets.

E.g. i) R1 _ [LOC] means that the contents of memory location LOC are transferred into

register R1.

ii) R3 _ [R1] + [R2] adds the contents of registers R1 and R2 and then places their sum

into register R3.

b) Assembly Language Notation:- The same operations can be represented in assembly

language format as shown below.

E.g. i) Move LOC, R1

ii) Add R1,R2,R3

BASIC INSTRUCTION TYPES

There are five types of instruction formats in a computer that are commonly used,

namely:

1. Three-address instruction format

2. Two-address instruction format

3. One-address instruction format

4. Zero-address instruction format

5. One-and-half address instruction format

Three-address instruction

C = A + B is a high level instruction to add the values of the two variables A and B and

to assign the sum to a third variable C. When this statement is compiled, each of these

variables is assigned to a location in the memory. The contents of these locations

represent the values of the three variables. Hence the above instruction requires the

action:

C _ [A] + [B]

To carry out this instruction, the contents of the memory locations A and B are fetched

from the main memory and transferred into the processor – sum is computed – result is

30

sent back to memory and stored in location C. The same action is performed by a single

machine instruction (three address instruction)

Add A,B,C

Operands A and B are called the source operands, C is called the destination operand,

and Add is the operation to be performed on the operands. The general format is

Operation Source1,Source2, Destination

If k bits are needed to specify the memory address of each operand, the encoded form of

the above instruction must contain 3k bits for addressing purposes + the bits needed to

denote the Add operation.

Two-address instruction

An alternative method is to use two address instruction of the form

Operation Source,Destination

E.g. Add A,B which perform the operation

B _ [A] + [B] Here the sum is calculated and the result is stored in location B replacing

the original contents of this location. i.e. operand B acts as source as well as destination.

In the former case (three address instruction) the contents of A and B were not destroyed.

But here the contents of B are destroyed. This problem is solved by using another two-

address instruction to copy the contents of one memory location into another location.

Now C _ [A] + [B] is equivalent to

Move B,C

Add A,C

Note: In all the above instructions, the source operands are specified first, followed by the

destination. But there are many computers in which the order is reversed.

One-address instruction

Instead of mentioning the second operand, it is understood to be in a unique location. A

processor register usually called the Accumulator is used for this purpose.

31

E.g. i) Add A means that the contents of the memory location A is added to the contents

of accumulator and places the sum in the accumulator.

ii) Load A copies the contents of memory location A into accumulator

iii) Store A copies the contents of accumulator to the location A

Depending on the instruction, the operand may be source or destination.

Now the operation C _ [A] + [B] can be performed by executing the following

instructions

Load A

Add B

Store C

The above mentioned instructions can also be handled by using general purpose registers.

Let Ri represent a general purpose register.

Move A,Ri

Move Ri,A

Add A,Ri

They are generalizations of Load, Store and Add instructions of the single accumulator

case in which register Ri performs the functions of accumulator.

When a processor has several general-purpose registers, then many instructions involve

only operands that are in registers.

E.g., Add Ri, Rj

Add Ri, Rj, Rk

In the first instruction, Rj acts as both source and destination. In the second instruction,

Ri

And Rj are source and Rk is the destination.

Advantages of using CPU registers:

i) Data access from these registers is faster than that of main memory locations; because

these registers are inside the processor.

ii) Only few bits are needed to specify the register; because the number of registers is

very less.

For example, only 5 bits are needed to specify 32 registers.

32

iii) Instructions, where only register names are contained, will normally fit into one word

of memory.

Zero-address instruction

Here locations of all operands are defined implicitly. Such instructions are found in

machines that store operands in a structure called a pushdown stack. A stack is a list of

data elements, usually words or bytes, in which these elements can be added or removed

through the top of the stack by following the LIFO (last-in-first-out) storage mechanism.

A processor register called stack pointer. (SP) is used to keep track of the address of the

element at the top of the stack at any given time. The terms push and pop are used to

describe placing a new item on the stack and removing the top item from the stack

respectively.

One and half-address instruction

An instruction that specifies one operand in memory and one operand in a CPU register is

referred to as one-and-half address instruction. Using registers it is possible to increase

the speed of processing.

3.4 INSTRUCTIONS EXECUTION AND STRAIGHT LINE SEQUENCING

3.4.1 STRAIGHT LINE SEQUENCING

Let us take the operation C [A] + [B]. The Example 3.1 shows the program segment

as it appears in the main memory of a computer that has a two-address instruction format

and a number of general purpose CPU registers.

Example 3.1 A program for C [A] + [B]

 Address Contents

Begin execution here → i Move A,R0 ; A, B, A are memory

locations

33

 i+1 Add B, R0

 i+2 Move R0, C

 :

 :

 A data

 :

 :

 B data

 :

 :

 C data

For executing this program, the following steps are to be performed.

1. CPU contains the register called PC which holds the address of the instruction to be

executed next. To begin execution, the address of the first instruction ’i’ must be placed

in PC.

2. CPU control circuits use the information in the PC to fetch and execute the

instructions one at a time in the increasing order of addresses. This is called straight line

sequencing.

3. As each instruction is executed, the PC is incremented by 4 to point to the next

instruction.

Executing a given instruction is a two-phase procedure.

First Phase - Instruction Fetch: Instruction is fetched from the main memory location

whose address is in the PC and is placed in the Instruction Register (IR)

34

Second Phase – Instruction Execute: Instruction in the IR is examined to determine

which operation is to be performed. The specified operation is performed by the

processor. This may involve fetching operands from main memory (or processor

registers), performing an arithmetic or logic operation and storing the result in the

destination location. At some point during this two-phase procedure, the contents of the

PC are advanced to point to the next instruction. After the execution phase is over, new

instruction fetch can begin.

3.4.2 BRANCHING

Consider the task of adding ‘n’ numbers. Let the address of memory locations containing

n numbers are NUM1, NUM2,…NUMn. Separate Add instruction is used to add each

number to the contents of register R0. After all the numbers have been added, the result is

placed in the memory location SUM.

Example 3.2 A straight-line program for adding n numbers

 Address Contents

Begin execution here → i Move NUM1,R0

 i+1 Add NUM2, R0

 i+2 Add NUm3, R0

 :

 :

 i+n-1 Add NUMn, R0

 i+n Move R0, SUM

 :

 :

 SUM data

 NUM1 data

NUM2 data

35

 :

NUMn data

Instead of using long list of Add instruction, it is possible to place a single Ad instruction

in a loop as shown in Example 3.3 This loop causes a straight line sequence of

instructions to be executed repeatedly. The loop starts at location LOOP and ends at the

instruction Branch>0. During each pass through this loop, the address of the next entry is

determined and that entry is fetched and added to R0. Assume that the number of entries

in the list ‘n’ is stored in location N as shown.

Register R1 is used as a counter to determine the number of time the loop is to be

executed. Hence the contents of the location N are loaded in register R1 at the beginning

of the program. Then within the body of the loop the instruction

Decrement R1 reduces the contents of R1 by 1 each time through the loop. This means

that execution of the loop must be repeated as long as the result of the decrement

operation is greater than 0.

Example 3.3 Using a loop to add n numbers.

 Address Contents

 Move N,R1

 Clear R0

Loop: Determine address of “Next“ number and add “Next” number

to R0

Decrement R1

Branch > 0 Loop

Move R0,SUM

 :

 :

 Add NUMn, R0

36

 Move R0, SUM

 :

 :

 SUM

 N n

 NUM1 data

NUM2 data

 :

NUMn data

We now introduce Branch instruction. This type of instruction loads a new value into the

program counter. As a result, the processor fetches and executes the instruction at this

new address. A conditional branch instruction causes a branch only if a specified

condition is satisfied. If the condition is not satisfied, the PC is incremented in the normal

way and the next instruction in sequential address order is fetched and executed.

3.5 CONDITION CODES

The processor keeps track of some information about the results of various operations for

use by subsequent conditional branch instructions. This is done by recording the required

information into individual bits called as condition code flags. In some processors, these

flags are grouped together in a special register called the condition code register or status

register.

Four commonly used flags are:-

N (negative) Sets to 1 if the result is negative; otherwise, cleared to 0

Z (zero) Sets to 1 if the result is 0; otherwise, cleared to 0

V (overflow) Sets to 1 if arithmetic overflow occurs; otherwise, cleared to 0

C (carry) Sets to 1 if carry-out results from the operation; otherwise, cleared to 0

37

Check your progress:

1. Explain the memory operations.

2. Explain the different types of instruction format that are commonly used in a

computer.

3.6 SUMMARY

This unit introduced memory operations, various instructions, its representation in

different formats. The principles of instructions execution were emphasized. With the

understating of this, a reader can do detailed study of instruction execution of any

computer architecture.

3.7 KEYWORDS

Instruction: It is basic step to instruct a computer to carry out. A program consists of a

sequence of these steps.

.

3.8 ANSWERS TO CHECK YOUR PROGRESS

1. 3.2

2. 3.3

3.9 UNIT-END EXERCISES AND ANSWERS

9. Explain the classification of instructions.

10. What is zero-address and one-and-half address instruction format? Explain their

uses.

38

11. Explain the phases of an instruction execution.

12. Name the flags used with condition codes.

Answers: SEE

1. 3.3

2. 3.3

3. 3.4

4. 3.5

3.10 SUGGESTED READINGS

1. Carl Hamacher, Zvonko Vranesic, Safwat Zaky: Computer Organization, 5
th

 Edition,

 TMH 2002.

2. William Stallings: Computer Organization and Architecture, 7
th

 Edition, PHI 2006.

3. Vincenet P. Heuring and Harry F. Jordan: Computer Systems Design and

 Architecture, 2
nd

 Edition, Pearson Education, 2004.

39

UNIT 4: ADDRESSING MODES AND ASSEMBLY LANGUAGE

Structure

4.1 Objectives

4.1 Introduction

4.2 Addressing modes

4.3 Assembly languages

4.4 Assembler directives, Assembly and execution of programs

4.4 Stacks and queues

4.5 Number representation and operations.

4.6 Summary

4.7 Key words

4.8 Answers to check your progress

4.9 Unit-end exercises and answers

4.10 Suggested readings

4.0 OBJECTIVES

At the end of this unit you will be able to

 Identify the definition of addressing mode

 Examine and use different addressing techniques

 define what is an assembler, a source program, an object program

 explain what is an assembly language and its the importance in programming

 explain assembly language programs and the manner in which it gets executed

 use and appreciate binary number notation in assembly language programming

 Stacks and queues

 Number representation and operations

4.1 INTRODUCTION

 This unit is about the addressing modes and assembly languages. Machine instructions

are represented by strings of 0’s and 1’s. Such patterns of 0’s and 1’s become

40

cumbersome while programs are discussed or written. So, these patterns are represented

and replaced by symbolic names. Some examples of symbolic names include Move, Add,

Branch, Increment etc. When writing programs for a specific computer, the symbolic

names are replaced by acronyms called mnemonics. Examples of mnemonics include

MOV, ADD, BR, INC etc. Using mnemonics and Register Transfer Notation, a program

is written governing the rules. Such a program is called as an assembly language. The set

of rules for using the mnemonics in the specification of complete instructions and

programs is called the syntax of the language.

4.2 ADDRESSING MODES

The term addressing mode refers to the way in which the operand of an instruction is

specified.

1. Register mode: The operand is the contents of a CPU register; the name of register is

given in the instruction

E.g. Move R1,R2 The contents of R1 is transferred to R2

2. Absolute mode (Direct mode): The operand is in a memory location. The address of

the memory location is explicitly given in the instruction.

 E.g. Add A,B The contents of the memory location A is added to the contents of the

memory location B. The addresses of A and B are given in the instruction itself.

3. Immediate mode: The operand is given explicitly in the instruction. This mode is used

in specifying address and data constants in programs

E. g. Move #200, R0

This instruction places the value 200 in register R0.

4. Indirect mode: Here the instruction does not give the operand or its address explicitly.

Instead it provides the effective address of the operand. Effective address of the operand

is the contents of a register or main memory location, whose address appears in the

instruction. We denote indirection by placing the name of the register or the memory

address given in the instruction in parenthesis

Let us consider two cases:

i) Add (A), R0

41

ii) Add (R1), R0

In the first case, when the instruction is executed, CPU starts by fetching the contents of

location A in the main memory. Since indirect addressing is used, the value B stored in A

is not the operand, but the address of the operand. Hence CPU requests another read

operation from the main memory and this is to read the operands (contents of location B).

The CPU then adds the operand to the contents of R0

In the second case, the operand is accessed indirectly through register R1 which contains

the value B.

Note: The register or memory location that contains the address of the operand is called a

pointer. Indirection is a powerful concept in programming.

5. Index mode: In this mode, the effective address of the operand is generated by adding

a constant value to the contents of a register. The register used may be a special register

provided for this purpose or may be any one of the general purpose register – referred to

as an Index Register.

Index mode is indicated symbolically as X(Ri), where X denotes a constant value

contained in the instruction and Ri is the name of the register involved. The effective

address of the operand is given by EA or Aeff = X + [Ri]

In assembly language program, the constant X may be given either as an explicit number

or as a name representing a numerical value.

There are two ways of using the index mode.

1. Offset is given as a constant: Here the index register R1 contains the address of a

memory location and the value X defines an offset called displacement

Add 20(R1),R2

2. Offset is in the index register: Here the constant X corresponds to a memory

address and the contents of the index register define the offset to the operand.

Add 1000(R1),R2

In either case, the effective address is the sum of two values; one is given explicitly in the

instruction and the other is in a register.

42

5. Relative mode: The effective address is determined by the index mode. But here the

program counter (PC) is used in place of the general purpose register Ri. i.e. X(PC) can

be used to address a memory location that is X bytes away from the location presently

pointed by the program counter. Since the addressed location is identified “relative” to

the program counter, which always identifies the current execution point in a program,

this mode is called as Relative mode.

This mode is used to access data operands. It is commonly used to specify the target

address in branch instruction.

6. Autoincrement mode: The effective address of the operand is the contents of a

register specified in the instruction. After accessing the operand, the contents of the

register is automatically incremented to point to the next item in a list. We denote the

autoincrement mode by putting the specified register in parenthesis to show that the

contents of register is used as the effective address, followed by a plus (+) sign to indicate

that these contents are to be incremented after the operand is accessed. Thus the

autoincrement mode is written as

(Ri) +. If we use autoincrement mode, it is possible to eliminate the increment

instruction

7. Autodecrement mode: The contents of a register specified in the instruction are

decremented. These contents are then used as the effective address of the operand. We

denote the

autodecrement mode by putting the specified register in the parenthesis, preceded by a

minus (-) sign to indicate that the contents of the register are to be decremented before

being used as the effective address. Thus we write − (R4). This mode allows accessing of

operands in the direction of descending address.

4.3 ASSEMBLY LANGUAGES

Assembler:

Programs written in assembly level language can be automatically translated into a

sequence of machine instructions by a program called an assembler. Assembler is an

43

important utility program, and it is an example for system software. Like any other

program, an assembler is also stored as a sequence of machine instructions in the memory

of the computer. A user program is usually entered into a computer with the help of a

keyboard and it is either stored in the memory of the computer or on the magnetic disk.

So, a user program is simply a set of alphanumeric characters. When the assembler

program is executed, it reads the user program, analyzes it and then generates the desired

machine language program. The user program in its original alphanumeric text is called

as a source program, and the assembled machine language program is called as an object

program.

Note: the assembly language for a given computer may or may not be case sensitive i.e. it

may or may not distinguish between capital and lower case letters.

In our discussions, we will use capital letters to denote all symbolic names and labels.

And the instruction format consists of the following:

Op-code Operand1, Operand2

The op-code (or operation code) mnemonic is followed by at least one blank space

character and this is followed by the information that specifies the operands separated by

comma. Since there are several addressing modes for specifying operand locations, the

instruction must indicate this.

Examples:

1. MOVE R0, SUM

The mnemonic MOVE represents the binary pattern or OP code. This operation move is

performed by this instruction. The assembler translates this mnemonic into binary OP

code that is computer is capable of understanding. Here R0 is the source operand and

SUM is the binary address representation of the destination operand and it is in the

memory location.

2. ADD #5, R3

This instruction adds he number 5 to the contents of register R3. The result of this

operation is put back in the register R3. # symbol indicates that the addressing mode

44

followed is immediate mode. Where in, the data value 5 is explicitly specified as a part of

instruction. Some assembly language use op-code mnemonic instead of symbols. In such

case, the instruction ADDI 5, R3 is used in place of ADD #5, R3 where the suffix I in the

mnemonic ADDI states that the source operand is given in the immediate addressing

mode.

3. MOVE #5, (R2)

In this instruction, the parentheses around the name or symbol denote a pointer to the

operand. Suppose R2 contains MEM1 the address of memory location, then executing

this instruction means the number 5 is to be placed in a memory location which is pointed

to by register R2. This instruction can also be written as MOVEI 5(R2) where the suffix

I in the mnemonic MOVEI states I denotes Indirect mode.

4.4 ASSEMBLER DIRECTIVES

Apart from providing a mechanism for representing instructions in a program, the

assembly programming language also allows the programmer to specify other

information which is essential to translate the source program into object program. Such

statements in a program are called assembler directives or commands. This statement

does not denote an instruction that will be executed when the object program is run. As

an example let us consider the statement

 SUM EQU 200

In the above statement, SUM is a name which is used to represent value 200. This

statement informs the assembler that the name SUM should be replaced with the value

200 when ever it is called for.

Let us illustrate the use of assembly language through the following program. Here we

are considering a 32 bit word length computer and it is byte addressable. The memory

arrangement for the program is shown in Figure 4.1.

45

Figure 4.1 Memory arrangements for the program

Figure 4.1 shows the memory addresses where the machine instructions and the required

data items are to be found after the program is loaded for the execution. The assembler

needs to know the information pertaining to questions such as: how to interpret names,

where to place the instructions in the memory or where to place the data operands in the

memory, if it has to produce an object program for the program. The source program may

be written as shown in Figure 4.2 to provide the required information for the assembler

with respect to program in Figure 4.1. The use of assembler directives may be seen in

example program of Figure 4.2.

46

Figure 4.2 assembly language representations for the program in Figure 4.1

The meaning and importance of the assembler directives used in the example program are

given below:

1. EQU

EQU is the Equate directive. It informs the assembler about the value of SUM.

2. ORIGIN

This informs the assembler program where in the memory to place the data blocks that

follows.

47

3. DATAWORD

This directive is used to inform the assembler about the data value that needs to be placed

in the memory location indicated by ORIGIN directive.

4. RESERVE

This indicates that the specified size of memory block is to be reserved for data. In the

example, a memory block of 400 bytes is to be reserved for data and the name NUM1 is

to be associated with address 208.

5. END

This tells the assembler that this is the end of the source program text. It includes the

label START which is the address of the location in which execution of the program is to

begin.

6. RETURN

This directive identifies the point at which execution of the program should be

terminated. It causes the assembler to insert an appropriate machine instruction that

returns control to the operating system of the computer.

4.5 ASSEMBLY AND EXECUTION OF PROGRAMS

A source program which is written in an assembly language must be assembled into

machine language object program before it gets executed. This task is performed by an

assembler which replaces all symbols denoting operations and addressing modes with the

binary codes used in machine instructions and replaces all names and labels with their

actual values. The assembler assigns addresses to instructions and data blocks starting at

the address given in the ORIGIN assembler directives. It also inserts constants that may

be given in the DATAWORD directives and it reserves memory space as requested by

the RESERVE commands.

48

An important part of the assembly process is to determine the values that replace the

names. The value of a name can be specified by an EQU directive or a name can be

defined in the Label field of a given instruction. The value represented by the name is

determined by the location of the instruction which is currently under consideration in the

assembled object program. Hence, the assembler must be able to keep track of addresses

as it generates the machine code for successive instructions.

In certain instances, for example when there is a branch instruction in the program, the

assembler do not directly replace a name representing an address with the actual value of

this address. Instead, it implements the branch instruction by specifying the branch target

using relative addressing mode. The assembler computes the branch offset, which is

nothing nut the distance to the target and puts it into the machine instruction.

Two-pass assembler:

An assembler keeps track of all names and numerical values that correspond to them

while scanning through a source program with the help of a symbol table. When a name

appears for the second time, it is replaced with its value from the symbol table. But, a

problem arises when a name appears as an operand before it is given a value. A simple

solution to this problem is to have the assembler scan through the source program two

times. During the first scan or first pass, it creates a complete symbol table. At the end of

this pass, all names are assigned with numerical values. The assembler then goes through

the source program for a second time or second pass where in it substitutes values for all

names from the symbol table. This kind of assembler with two passes is known as a two-

pass assembler.

Loader:

The assembler stores the object program on a magnetic disk. The object program must be

loaded into the memory of a computer before it is being executed. In order to

accommodate this, a loader is used. A loader is a utility program placed in memory.

Executing the loader performs a sequence of input operations that are needed to transfer

the machine language program from the disk into a specified place in the memory. The

loader must know the length of the program and the address in the memory where it will

49

be stored. This information is made available by an assembler and it is placed as

information in a header preceding the object code. When the object program begins

executing, it proceeds to completion unless there are logical errors in the program. And

these errors are found out by the users with the help of system software program known

as a debugger. This program enables a user to stop execution of the object program at

certain points of interest and also to examine the contents of various processor registers

and memory locations.

4.6 STACKS AND QUEUES

A stack is an important data structure. It is a list of data items with the accessing

restriction that item can be added or removed at one end of the list only. This is called the

top of the stack, and the other end is called the bottom. A stack is also called pushdown

stack or LIFO data structure. E.g, a pile of trays in cafeteria, the way they are used and

placed back. The terms push and pop are used to describe placing a new item on the stack

and removing the item from the stack, respectively.

Data stored in the memory of a computer can be organized as a stack, with successive

elements occupying successive memory locations. Assume that the first element is placed

in location BOTTOM, and when new elements are pushed onto the stack, they are placed

in successively lower address locations. We use a stack that grows in the direction of

decreasing memory addresses in our discussion, because this is a common practice.

50

SP

Stack Bottom

Current
Top of Stack

TOS 0

1

2

3

4

7

8

9

10

5

6

Stack

0 0 5 5

0 0 0 8

0 0 2 5

0 0 1 5

0 1 2 3

FULL EMPTY

Figure 4.3 A stack of words in the memory.

Figure 4.3 shows a stack of word data items in the memory of a computer. It contains

numerical values, with 43 at the bottom and −28 at the top. A processor register is used to

keep track of the address of the element of the stack that is at the top at any given time.

This register is called the stack pointer (SP). It could be one of the general-purpose

registers or a register dedicated to this function. The push operation can be implemented

as

Subtract #4, SP

Move NEWITEM,(SP)

where the Subtract instruction subtracts the source operand 4 from the destination

operand contained in SP and places the result in SP. These two instructions move the

word from location NEWITEM onto the top of the stack, decrementing the stack pointer

by 4 before the move. The pop operation can be implemented as

Move (SP), ITEM

Add #4, SP

51

These two instructions move the top value from the stack into location ITEM and then

increment the stack pointer by 4 so that it points to the new top element. If the processor

has the Autoincrement and Autodecrement addressing modes, then the push operation

can be performed by the single instruction

Move NEWITEM,−(SP)

`

and the pop operation can be performed by

Move (SP)+,ITEM

When a stack is used in a program, it is usually allocated a fixed amount of space in the

memory. In this case, we must avoid pushing an item onto the stack when the stack has

reached its maximum size. Also, we must avoid attempting to pop an item off an empty

stack, which could result from a programming error

Another useful data structure that is similar to the stack is called a queue. Data are stored

in and retrieved from a queue on a first-in–first-out (FIFO) basis. Thus, if we assume that

the queue grows in the direction of increasing addresses in the memory, which is a

common practice, new data are added at the back (high-address end) and retrieved from

the front (low-address end) of the queue.

There are two important differences between how a stack and a queue are implemented.

One end of the stack is fixed (the bottom), while the other end rises and falls as data are

pushed and popped. A single pointer is needed to point to the top of the stack at any

given time. On the other hand, both ends of a queue move to higher addresses as data are

added at the back and removed from the front. So, two pointers are needed to keep track

of the two ends of the queue.

Another difference between a stack and a queue is that, without further control, a queue

would continuously move through the memory of a computer in the direction of higher

addresses. One way to limit the queue to a fixed region in memory is to use a circular

buffer. Let us assume that memory addresses from BEGINNING to END are assigned to

52

the queue. The first entry in the queue is entered into location BEGINNING, and

successive entries are appended to the queue by entering them at successively higher

addresses. By the time the back of the queue reaches END, space will have been created

at the beginning if some items have been removed from the queue. Hence, the back

pointer is reset to the value BEGINNING and the process continues.

As in the case of a stack, care must be taken to detect when the region assigned to the

data structure is either completely full or completely.

4.7 NUMBER REPRESENTATION AND OPERATIONS

While programming using an assembly language it is convenient to use any familiar

number representations for representing numerical values. These values are stored in the

computer as binary numbers. In some situations, it is more convenient to specify the

binary patterns directly. Most of the assemblers allow the programmer to specify numeric

values in various ways, using conventions that are defined by the syntax of assembly

language.

Let us consider an example, the number 93 which can be represented by an 8-bit binary

number 01011101. If this value is to be used as an immediate operand, it can be written

as a decimal number as shown in the instruction

 ADD #93,R1

or as a binary number identified by a prefix symbol such as with a percent sign. It is

shown as

 ADD #%01011101, R1

But writing instructions using binary numbers become very cumbersome. So, to make the

program development easy and convenient, the binary numbers are written in a compact

manner by using hexadecimal number representations. In hexadecimal or hex notation,

four bits are represented by a single hex digit. This notation is a direct extension of the

Binary Coded Decimal (BCD) code. Where, the numbers 0000, 0001, ……,1001 are

represented by the digits 0, 1, …..,9 as in BCD. The remaining six 4-bit patterns 1010,

1011,……,1111 are represented by letters A, B, …., F. In hexadecimal representation, the

53

decimal value 93 becomes 5D and it is often identified by prefixing a dollar sign. Thus

the instruction ADD #%01011101, R1 could be written in assembly language with hex

notation as

 ADD #$5D,R1

Check your progress:

1. Explain the following addressing modes using suitable examples: absolute mode,

index mode, immediate mode, relative mode

2. What is an assembler?

3. With an example, explain the use of assembler directives.

4. What is hexadecimal notation? Give examples

4.8 SUMMARY

In this unit, the principles of general addressing techniques were emphasized. We were

able to see and briefly discuss about the most important system software such as an

assembler and a loader. An assembler translates the assembly language program into

machine language. Using mnemonics it is possible to write assembly language programs.

Further, assembler directives or commands are used by the programmers for specifying

other information to an assembler for translating the source program into object program.

The manner in which an assembly language program is written and executed is briefly

discussed in this unit along with the importance of representing numerical values in hex

notation.

4.9 KEY WORDS

Addressing mode: The method used to provide an access path to operands in memory

and CPU registers.

Effective address: The address generated by the CPU to access the operands in memory

54

Mnemonics: Symbolic names or acronyms used for representing patterns of 0’s and 1’s

in an instruction.

Assembly Language: Is a programming language with a complete set of mnemonics and

the rules for using it.

Assembler: Is a program which translates the program written in assembly language into

a sequence of machine instructions.

Source program: The user program in its original alphanumeric text format.

Object program: The assembled machine language program.

Assembler directives: Directives or commands used by the assembler while it translates

a source program into an object program.

4.10 ANSWERS TO CHECK YOUR PROGRESS

1. 4.2

2. 4.3

3. 4.4

4. 4.7

4.11 UNIT-END EXERCISES AND ANSWERS

1. What is autoincrement mode? When do you use it?

2. What are mnemonics? Give examples.

3. Define the following: Source program, object program, assembler

4. Explain the following assembler directives: ORIGIN, DATAWORD, RESERVE

5. What is a two-pass assembler? Explain the importance of each phase.

6. What is the function of: loader, debugger

7. Expand BCD.

Answers: SEE

1. 4.2

2. 4.1

3. 4. 3

4. 4.4

55

5. 4.5

6. 4.5

7. 4.7

4.12 SUGGESTED READINGS

1. Carl Hamacher, Zvonko Vranesic, Safwat Zaky: Computer Organization, 5
th

 Edition,

 TMH 2002.

2. William Stallings: Computer Organization and Architecture, 7
th

 Edition, PHI 2006.

3. Vincenet P. Heuring and Harry F. Jordan: Computer Systems Design and

 Architecture, 2
nd

 Edition, Pearson Education, 2004.

56

UNIT 5: FUNDAMENTAL CONCEPTS

Structure

5.0 Objectives

5.1 Introduction

5.2 Some Fundamental Concepts

 5.2.1 Fetching a word from Memory

 5.2.2 Storing a Word in Memory

 5.2.3 Register Transfer

 5.2.4 Performing Arithmetic or Logic operations

 5.2.5 Register Gating and Timing of Data Transfers

5.3 Execution of a Complete Instruction

5.3.1 Branch Instruction

5.4 Summary

5.5 Key words

5.6 Answers to check your progress

5.7 Unit-end exercises and answers

5.8 Suggested readings

5.0 OBJECTIVES

At the end of this unit you will be able to

 Understand some Fundamental concepts such as

 Register transfers

 Performing an Arithmetic or Logic Operation

 Fetching a word from memory and storing a word in memory

 Understand execution of a complete instruction

 Explain branch instruction

57

5.1 INTRODUCTION

This unit is about the processing unit, which executes machine instructions and

coordinates the activities of other units. This is also called a processor or instruction set

processor (ISP). We understand its internal structure and how it performs the tasks of

fetching, decoding, and executing instructions of a program. The processing unit is called

central processing unit (CPU). We explore the organization of the hardware that enables

a CPU to perform its main function. We learn how the execution of a complete

instruction takes place and we also learn Branch Instructions.

5.2 SOME FUNDAMENTAL CONCEPTS

A program, a set of instructions, to be executed by a computer is loaded in sequential

locations in the main memory. To execute this program, the CPU fetches one instruction

at a time and performs the functions specified. Until a branch or a jump instruction is

executed, instructions are fetched from successive memory locations. The address of the

next instruction to be executed is kept by the CPU in a dedicated register called program

counter (PC). The contents of the PC are updated to point to the next instruction in the

sequence.

Assume that each instruction occupies one memory word. Therefore, one instruction

execution requires the CPU to perform the following 3 steps:

1. Fetch the contents of the memory location by the PC into instruction register (IR).

Symbolically, this can be written as:

IR ← [[PC]]

2. Increment the contents of the PC by 1, i.e., (assuming word addressable)

58

PC ← [PC]+1

3. Carry out the actions specified by the instruction in the IR.

Steps 1 and 2 are called the fetch phase and step 3 is called the execution phase.

Figure 5.1 Single-bus Organization of the Datapath inside a processor

59

Figure 5.1 shows an organization in which the arithmetic and logic unit (ALU) and all the

registers are interconnected via a single common bus. This bus is internal to the

processor.

The address and data lines of the external memory bus are shown in Figure 5.1

connected to the internal processor bus via the memory data register, MDR, and the

memory address register, MAR, respectively. Register MDR has two inputs and two

outputs. Data may be loaded into MDR either from the memory bus or from the internal

processor bus. The data stored in MDR either from the memory bus or from the internal

processor bus. The data stored in MDR may be placed on either bus. The input of MAR

is connected to the internal bus, and its output is connected to the external bus. The

control lines of the memory bus are connected to the instruction decoder and control logic

block. This unit is responsible for issuing the signals that control the operation of all the

units inside the processor and for interacting with the memory bus.

The use and number of the processor registers R0 through R(n-1) vary considerably from

one processor to another. Registers may be provided for general purpose use by the

programmer. Some may be dedicated as special-purpose registers, such as index registers

or stack pointers. Three registers, Y, S, and TEMP in Figure 5.1 are transparent to the

programmer. i.e., the programmer need not be concerned with them, because they are

never referenced explicitly by any instruction. They are used by the processor for

temporary storage during execution of some instructions. These registers are never used

for storing data generated by one instruction for later use by another instruction.

 The multiplexer MUX selects either the output of register Y or a constant value 4

to be provided as input A of the ALU. The constant 4 is used to increment the contents of

the program counter. We will refer to the two possible values of the MUX control input

Select as Select4 and Select Y for selecting the constant 4 or register Y, respectively.

60

As instruction execution progresses, data are transferred from one register to another,

often passing through the ALU to perform some arithmetic or logic operation. The

instruction decoder and control logic unit is responsible for implementing the actions

specified by the instruction loaded in the 1R register. The decoder generates the control

signals needed to select the registers involved and direct the transfer of data. The

registers, the ALU, and the interconnecting bus are collectively referred to as the

datapath.

 With few exceptions, an instruction can be executed by performing one or more

of the following operations in some specified sequence:

1. Fetch the contents of a given memory location and load them into a processor

register.

2. Store a word of data from a processor register into a given memory location.

3. Transfer a word of data from one processor register to another or to the ALU.

4. Perform an arithmetic or logic operation and store the result in a processor

register.

5.2.1 Fetching a Word from memory

To fetch a word from memory, the CPU has to specify the address of the memory

location where this information is stored and request a read operation. The CPU transfers

the address of the required word of information to the MAR, which is connected to

address lines of the memory bus. The CPU uses the control lines of the memory bus to

indicate a Read operation is needed. Then the CPU waits for Read operation completion,

which is indicated by Memory-Function Completed (MFC) signal set. When the MFC is

set, the information on the data lines is loaded into MDR.

 The connections for register MDR are illustrated in Figure 2.4. It has four control

signals: MDRin and MDRout control the connection to the internal bus, and MDRin E and

MDRout E control the connection to the external bus.

61

The example below demonstrates how to fetch a word from memory location, whose

address is specified in R1, and place the word fetched in R2

1 MAR ← [R1]

2 Request memory READ and put the data to the address register

3 Wait for the Memory Fetch Cycle (MFC) signal and put the result from [MDR] to

R2.

4 R2 ←[MDR]

Both 2 and 3 are regarded as asynchronous data transfer.

A data transfer in which one device initiates the transfer and waits until the other device

responds (with an MFC signal) is referred to as an asynchronous transfer. An alternative

scheme in many computers is synchronous. In synchronous transfer, one of the control

lines of the bus carries pulses from a clock running continuously at a fixed frequency.

These pulses provide common timing signals to the CPU and the main memory.

5.2.2 Storing a Word in Memory

After the address is loaded into MAR and data into MDR, The CPU uses the control lines

of the memory bus to indicate a Write operation is needed.

The example below shows how the machine store a word in R2 into a memory location,

whose address is specified in R1

1 MAR ← [R1]

2 MDR ←[R2]

3 Request memory write

4 Wait for MFC signal

Both steps 3 and 4 are regarded as asynchronous data transfer. As in the case of the Read

operation, the Write control signal causes the memory bus interface hardware to issue a

62

Write command on the memory bus. The processor remains in step 3 until the memory

operation is completed and an MFC response is received.

5.2.3 Register Transfers

 Instruction execution involves a sequence of steps in which data are transferred

from one register to another. For each register, two control signals are used to place the

contents of that register on the bus or to load the data on the bus into the register. This is

represented symbolically in Figure 5.2 the input and output of register Ri are connected to

the bus via switches controlled by the signals Riinn and Riout respectively. When Riinn is

set to 1, the data on the bus are loaded into Ri. Similarly, when Riout is set to 1, the

contents of register Ri are placed on the bus. While Riout is equal to 0, the bus can be used

for transferring data from other registers.

Suppose that we wish to transfer the contents of register R1 to register R4. This can be

accomplished as follows:

 Enable the output of register R1 by setting R1out to 1. This places the contents of

R1 on the processor bus.

 Enable the input of register R4 by setting R4in to 1. This loads data from the

processor bus into register R4.

All operations and data transfers within the processor take place within time periods

defined by the processor clock. The control signals that govern a particular transfer are

asserted at the start of the clock cycle. In our example, R1out and R4in are set to 1. The

registers consist of edge-triggered flip-flops. Hence, at the next active edge of the clock,

the fip-flops that constitute R4 will load the data present at their inputs. At the same time,

the controls signals R1out and R4in will return to 0.

63

BA

Z

ALU

Y in

Y

Z in

Z out

R i in

R i

R i out

b us
Internal processor

Constant 4

MUXSelect

Figure 5.2 Input and output gating for the registers in Figure 5.1.

5.2.4 Performing an Arithmetic or Logic Operation

 The ALU is a combinational circuit that has no internal storage. It performs

arithmetic and logic operations on the two operands applied to its’ A and B inputs. To

add two numbers, the two operands have to be made available at the inputs of the ALU

simultaneously. In Figures 5.1 and 5.2, one of the operands is the output of the

multiplexer MUX and the other operand is obtained directly from the bus. The result

produced by the ALU is stored temporarily in register Z. Therefore, a sequence of

operations to add the contents of register R1 to those of register R2 and store the result in

register R3 is:

1. R1out, Yin

2. R2out, Select Y, Add, Zin

3. Zout, R3in

64

The signals whose names are given in any step are activated for the duration of the

clock cycle corresponding to that step. All other signals are inactive. Hence, in step 1,

the output of register R1 and the input of register Y are enabled, causing the contents

of R1 to be transferred over the bus to Y. In step 2, the multiplexer’s Select signal is

set to Select Y, causing the multiplexer to gate the contents of register Y to input A of

the ALU. At the same time, the contents of register R2 are gated onto the bus and,

hence, to input B. The function performed by the ALU depends on the signals

applied to its control lines. In this case, the Add line is set to 1, causing the output of

the ALU to be the sum of the two numbers at inputs A and B. This sum is loaded into

register Z, because its input control signal is activated. In step 3, the contents of

register Z are transferred to the destination register, R3. This last transfer cannot be

earned out during step 2, because only one register output can be connected to the bus

during any clock cycle.

5.2.1 Register Gating and Timing of Data Transfers

`Let us consider the case of each bit of the registers in Figure 5.1 and 5.2 consists of a

flip-flop as shown in Figure 5.3. The flip-flop shown is assumed to be one of the bits of

register Z. When the control input Zin is equal to 1, the flip-flop state changes to

corresponding to the data on the bus. Following a 1 to 0 transition at the Zin input, the

data stored in the flip-flop immediately before this transition is locked in until Zin is

again set 1.

Figure 7.3. Input and output gating for one register bit.

D Q

Q

Clock

1

0

Riout

Ri in

Bus

Figure 5.3 Input and output gating for one register bit

65

5.3 EXECUTION OF A COMPLETE INSTRUCTION

Let us now consider the sequence of elementary operations required to execute one

instruction. Consider the instruction,

 Add (R3), R1

which adds the contents of a memory location pointed to by R3 to register R1. Executing

this instruction requires the following actions:

1. Fetch the instruction

2. Fetch the first operand (the contents of the memory location pointed to by R3)

3. Perform the addition

4. Load the result into R1

The Figure 5.4 gives the sequence of control steps required to perform these operations

for the single-bus architecture of Figure 5.1. Instruction execution is as follows: In step

1, the instruction fetch operation is initiated by loading the contents of the PC into the

MAR and sending a Read request to the memory. The Select signal is set to Select1,

which causes the multiplexer MUX to select the constant 1. This value is added to the

operand at input B, which is the contents of the PC and the result is stored in register. The

updated value is moved from register back into the PC during step 2, while waiting for

the memory to respond, the word fetched from the memory is loaded into the IR.

 Step Action

1. PCout , MARin , Read, Select1, Add, Zin

2. Zout , PCin , Y in , WMFC

3. MDRout , IRin

4. R3out , MARin , Read

5. R1out , Yin , WMFC

6. MDRout , SelectY, Add Zin

7. Zout , R1in , End

66

Figure 5.4 Control Sequence for Execution of the instruction ADD (R3), R1

Steps 1 through 3 constitute the instruction fetch phase, which is the same for all

instructions. The instruction decoding circuit interprets the contents of the IR at the

beginning of step 4. This enables the control circuitry to activate the control signals for

steps 4 through 7, which constitute the execution phase. The contents of register R3 are

transferred to the MAR in step 4 and a memory Read operation is initiated. Then, the

contents of R1 are transferred to register Y in step 5, to prepare for the addition operation.

When the Read operation is completed, the memory operand is available in register MDR

and the addition operation is performed in step 6. The contents of MDR are gated to the

bus and thus also to the B input of the ALU and register Y is selected as the second input

to the ALU by choosing Select Y. The sum is stored in register Z and then transferred to

R1 in step 7. The End signal causes a new instruction fetch cycle to begin by returning to

step 1.

5.3.1 Branch Instructions

 A branch instruction replaces the contents of the PC with the branch target

address. This address is usually obtained by adding an offset X which is given in the

branch instruction to the updated value of the PC. Figure 5.5 gives a control sequence

that implements an unconditional branch instruction.

 Step Action

1. PCout , MARin , Read, Select1, Add Zin

2. Zout , PCin , Yin , WMFC

3. MDRout , IRin

4. Offset-field-of-IRout , Add Zin

5. Zout , PCin , End

Figure 5.5 Control Sequence for an unconditional Branch Instruction

Processing starts, as usual with the fetch phase. This phase ends when the instruction is

loaded into the IR in step 3. The offset value is extracted from the IR by the instruction

67

decoding circuit which will also perform sign extension if required. Since the value of the

updated PC is already available in register Y, the offset X is gated onto the bus in step 4

and an addition operation is performed. The result, which is the branch target address, is

loaded into the PC in step 5.

The offset X used in branch instruction is usually the difference between the branch

target address and the address immediately following the branch instruction. For

example, if the branch instruction is at location 2000 and if the branch target address is

2050, the value of X must be 49. The reason for this can be readily appreciated from the

control sequence in the Figure 5.5. The PC is incremented during the fetch phase, before

knowing the type of instruction being executed. Thus, when the branch address is

computed in step 4, the PC value used is the updated value, which points to the

instruction following the branch instruction in the memory.

 Consider now a conditional branch. In this case, we need to check the status of the

condition codes before loading a new value into the PC. For example, for a Branch-on-

negative (Branch<0) instruction, step 4 in Figure 5.5 is replaced with:

 Offset-field-of-IRout, Add, Zin , If N=0 then End

 Thus, if N=0, the processor returns to step 1 immediately after step 4. If N=1, step

5 is performed to load a new value into the PC, thus performing the branch operation.

Check your progress

1 With a neat diagram of single bus organization, explain the working of PC.

2 What is register transfer?

3 Give control Sequence for Execution of the instruction ADD (R3), R1.

68

5.4 SUMMARY

 In this unit we have learnt some fundamental Concepts such as Register

Transfers, Performing an Arithmetic or Logic Operation and Fetching a word from

Memory and Storing a word to memory. We also learnt how the execution of a complete

instruction and also branch instruction is carried out in the computing system.

5.5 KEYWORDS

MAR: Memory Address Register,

MDR: Memory Data Register

PC – Program Counter

IR – Instruction Register

MDR – Memory Data Register

MAR – Memory Address register

5.6 ANSWERS TO CHECK YOUR PROGRESS

1 5.2

2 5.2.3

3 5. 3

5.7 UNIT END EXERCISES AND ANSWERS

1. Elucidate Fundamental Concepts.

2. Elucidate Register Transfers,

3. Sketch out performing of Arithmetic and Logic Operation

4. Explain fetching a word from Memory.

5. Discuss about execution of a complete instruction.

6. Explain branch instruction.

Answer: SEE

69

1 5.2

2 5.2.3

3 5.2.4

4 5.2.1

5 5.3

6 5.3.1

5.8 SUGGESTED READINGS

1. Carl Hamacher, Zvonko Vranesic, Safwat Zaky: Computer Organization, 5
th

 Edition,

 TMH 2002

2. William Stallings: Computer Organization and Architecture, 7
th

 Edition, PHI 2006

3. Vincenet P. Heuring and Harry F. Jordan: Computer Systems Design and

 Architecture, 2
nd

 Edition, Pearson Education, 2004.

70

UNIT 6: PERFORMANCE CONSIDERATIONS

Structure

6.0 Objectives

6.1 Introduction

6.2 Multiple Bus Organization

6.3 Other Enhancement

6.4 A Complete Processor

6.5 Summary

6.6 Key words

6.7 Answers to check your progress

6.8 Unit-end exercises and answers

6.8 Suggested readings

6.0 OBJECTIVES

After studying this unit, we will be able to:

 Explain Multiple Bus Organization

 Understand need for overlapping fetch and execution

operations

 Realize the usage of Cache

6.1 INTRODUCTION

 In this unit, we will learn, Multiple Bus Organization and also the control

sequence for the instruction. This unit also explains the other performance enhancements

possible.

 We have used the simple single-bus structure in Figure 5.1 to elucidate the basic

ideas. The resulting control sequences in Figures 5.6 and 5.7 are quite long because only

one data item can be transferred over the bus in a clock cycle. To reduce the number of

71

steps needed, most commercial processors provide multiple internal paths that enable

several transfers to take place in parallel.

Performance of a computer depends on many factors, some of which are related to the

design of the CPU. Three of the most important factors are the power of the instruction,

the clock cycle time, and the number of clock cycle per instruction.

A powerful instruction performs a complex multistep task, at the cost of several clock

cycles for execution. The question is to have complex instructions or simple instruction.

But, the evolution of RISC processors has demonstrated that it may be advantageous to

use simple instructions.

Clock speed has a major influence on performance. It depends on the technology used to

implement the electronic circuits and the complexity of functional units such as the ALU.

So far we considered a simple single bus model. For better performance, we now

consider more complex structures. It is always desirable to use as few clock cycles as

possible. A single clock cycle per instruction is ideal. This cannot be achieved with

simple model, because bus allows only one data item to be transferred during one clock

cycle. Therefore, we should consider the use of multiple buses within the CPU.

6.2 MULTIPLE BUS ORGANIZATION

Figure 6.1 depicts a three-bus structure used to connect the registers and the ALU of a

processor. All general-purpose registers are combined into a single block called the

register file. In VLSI technology, the most efficient way to implement a number of

registers is in the form of an array of memory cells similar to those used in the

implementation of random-access memories (RAMs). The register file in Figure 6.1 is

said to have three ports. There are two outputs, allowing the contents of two different

registers to be accessed simultaneously and have their contents placed on buses A and B.

72

The third port allows the data on bus C to be loaded into a third register during the same

clock cycle.
Memory bus

data lines

Figure 7.8. Three-bus organization of the datapath.

Bus A Bus B Bus C

Instruction
decoder

PC

Register

f ile

Constant 4

ALU

MDR

A

B

R

MU
X

Incrementer

Address
lines

MAR

IR

Figure 6.1: Three-bus organization of the datapath

 Buses A and B are used to transfer the source operands to the A and B

inputs of the ALU where an arithmetic or logic operation may be performed. The result is

transferred to the destination over bus C. If needed, the ALU may simply pass one of its

two input operands unmodified to bus C. We will call the ALU control signals for such

an operation R=A or R=B. The three-bus arrangement obviates the need for registers Y

and Z in Figures 5.1.

 A second feature in Figure 6.1 is the introduction of the Incrementer unit, which is

used to increment the PC by 1. Using the Incrementer, eliminates the need to add 1 to the

PC using main ALU, as was done in Figures 5.6 and 5.7. The source for the constant 1 at

the ALU input multiplexer is still useful. It can be used to increment other addresses such

as the memory addresses in Load Multiple and Store Multiple instructions.

73

The structure in Figure 6.1 requires significantly fewer control steps to execute

instructions compared to Figure 5.1. Consider the three-operand instruction of the form

OP Rsrc1, Rsrc2, Rdst

in which an operation is performed on the contents of two source registers, and the result

is placed into a destination register. Buses A and B are used to transfer the source

operands, and bus C provides the path to the destination. The path from the source buses

to the destination bus goes through the ALU, where the required operation is performed.

Thus, assuming that the operation to be performed can be completed in one pass through

the ALU, the structure of Figure 6.1 allows the execution phase of an instruction to be

performed in one cycle. Note that if it is merely necessary to copy the contents of one

register into another, then the transfer is also done through the ALU, but no arithmetic or

logic operation is performed.

 The temporary storage registers Y and Z in Figure 5.1 are not required in Figure 6.1.

Register Y is not needed because both inputs to the ALU are provided simultaneously via

buses A and B. Register Z is not needed because the output from the ALU is transferred

to the destination register via the third bus, C. In this structure it is essential to ensure that

the same register can serve as both the source and the destination in a given instruction.

This would not be possible if the registers were simple latches as in Figure 5.3. Instead

the register file must be implemented using either edge-trigger1ed or master–slave

circuits.

Example 6.1: Consider

 Add R4, R5, R6

The control sequence for executing this instruction is given in the Figure 6.2. In step 1,

the contents of the PC are passed through the ALU using the R=B control signal and

loaded into the MAR to start a memory read operation. At the same time, the PC is

incremented by 1. Note that the value loaded into MAR is the original contents of the PC.

74

The incremented value is loaded into the PC at the end of the clock cycle and will not

affect the contents of MAR. In step 2, the processor waits for MFC and loads the data

received into MDR and then transfers them to IR in step 3. Finally, the execution phase

of the instruction requires only one control step to complete step 4.

 Step Action

1. PC out , R=B, MAR in , Read, IncPC

2. WMFC

3. MDR out , R=B, IR in

4. R4outA , R5outBt, SelectA, Add, R6in , End

Figure 6.2: Control Sequence for the instruction Add R4, R5, R6

 By providing more paths for data transfer, a significant reduction in the number of

clock cycles needed to execute an instruction is achieved.

The three-bus structure allows execution of register-to-register operation in a single clock

cycle. This is particularly well suited to the requirements of RISC processors, in which

most arithmetic and logic instructions have register operands.

6.3 OTHER ENHANCEMENTS

It is possible to improve Performance greatly, if the CPU can overlap the fetch and

execute phases of instructions. While one instruction is being executed, the next

instruction can be pre-fetched from the memory. Recent processors include special

instruction unit, which fetches instructions and places them into a queue ready for

execution. The instruction unit generates memory addresses based on the address of the

last instruction fetched. It attempts to ensure that correct instructions are pre-fetched

when a branch instruction is encountered.

Use of a WMFC signal to wait for the response from a main memory is slower than the

CPU. Another approach to improve the performance is by use of cache memory on the

75

same chip as the CPU. Data can be accessed from the cache in one clock cycle. Hence, if

the required instructions and data are usually found in the cache, the apparent memory

access time will be short. If the desired data are not found in the cache (cache miss), it is

necessary to access the data in the main memory, which takes more time.

6.4 A COMPLETE PROCESSOR

 A complete processor can be designed using the structure shown in Figure 6.3.

This structure has an instruction unit that fetches instructions from an instruction cache or

from the main memory when the desired instructions are not already in the cache. It has

separate processing units to deal with integer data and floating-point data. Each of these

units can be organized as shown in Figure 6.1.

Instruction
unit

Integer

unit

Floating-point

unit

Instruction
cache

Data
cache

Bus interface

Main
memory

Input/
Output

Sy stem bus

Processor

Figure 7.14. Block diagram of a complete processor.

Figure 6.3: Block diagram of a complete Processor

 A data cache is inserted between these units and the main memory. Using separate

caches for instructions and data is common practice in many processors today. Other

processors use a single cache that stores both instructions and data. The processor is

76

connected to the system bus and hence, to the rest of the computer, by means of a bus

interface.

 Although, we have shown just one integer and one floating-point in Figure 6.3, a

processor may include several units of each type to increase the potential for concurrent

operations.

Check your progress

1. Compare single bus CPU with multiple CPU

2. Why to overlap fetch and execution operations

3. What is the use of cache memory?

6.6 SUMMARY

 In this unit, we have learnt the working of Multiple Bus Organization. We also

discussed about other enhancement to improve performance. We ended the unit with a

block diagram of a complete CPU.

6.5 KEYWORDS

 MUX – Multiplexer

 IR – Instruction Register

 MDR – Memory Data Register

 ALU – Arithmetic and Logic Unit

6.6 ANSWER TO CHECK YOUR PROGRESS

1. 6.1

2. 6.3

3. 6.3

77

6.7 UNIT_END EXCERCISES AND ANSWERS

1. Elucidate Multiple Bus Organization, with a neat diagram.

2. What are the other enhancements to improve performance of a computer

3. With block diagram, explain a complete CPU.

Answer: See:

1. 6.2

2. 6.3

3. 6.4

6.8 SUGGESTED READINGS

1. Carl Hamacher, Zvonko Vranesic, Safwat Zaky: Computer Organization, 5
th

 Edition,

 TMH 2002

2. William Stallings: Computer Organization and Architecture, 7
th

 Edition, PHI 2006

3. Vincenet P. Heuring and Harry F. Jordan: Computer Systems Design and

 Architecture, 2
nd

 Edition, Pearson Education, 2004.

78

UNIT 7: HARD-WIRED CONTROL

Structure

7.0 Objectives

7.1 Introduction

7.2 Hard-Wired Control

7.3 Summary

7.4 Key words

7.5 Answers to check your progress

7.6 Unit-end exercises and answers

7.7 Suggested readings

7.0 OBJECTIVES

After studying this unit, we will be able to

 Explain Hard-Wired Control.

7.1 INTRODUCTION

 In this unit, we learn how Hardware is used for generating internal control signals.

To execute instructions, the processor must have some means of generating the control

signals needed in the proper sequence. A variety of techniques have been used to

organize a control unit. Most of them fall into two major categories:

1. Hardwired control organization

2. Microprogrammed control organization

In this unit we discuss hardwired control. In the hardwired organization, the control unit

is designed as a combinational circuit. That is, the control unit is implemented by gates,

flip-flops, decoder and other digital circuits. Hardwired control units can be optimized for

fast operations

79

7.2 HARD – WIRED CONTROL

 Consider the sequence of control signals in Figure 5.4. Each step in this sequence

is completed in one clock period. A counter may be used to keep track of the control

steps, as shown in Figure 7.1. Each state, or count, of this counter corresponds to one

control step. The required control signals are determined by the following information:

 Contents of the control step

 Contents of the instruction register

 Contents of the condition code flags

 Other status flags (such as MFC)

CLK
Clock

Control step

IR
encoder

Decoder/

Control signals

codes

counter

inputs

Condition

External

Figure 7.1 Control unit organization

 To understand the structure of the control unit, we start with a simplified view of

the hardware involved. The decoder/encoder block in the above Figure 7.1 is a

combinational circuit that generates the required control outputs, depending on the state

of all its inputs. By separating the decoding and encoding functions, we obtain the more

detailed block diagram in Figure 7.2. The step decoder provides a separate signal line for

80

each step, or time slot, in the control sequence. Similarly, the output of the instruction

decoder consists of a separate line for each machine instruction. For any instruction

loaded in the IR, one of the output lines INS1 through INSm is set to 1 and all other lines

are set to 0. The input signals to the encoder block in Figure 7.2 are combined to generate

the individual control signals Yin PCout Add, End and so on. An example of how the

encoder generates the Zin control signal for the processor organization in Figure 5.1 is

given in Figure 7.3. This circuit implements the logic function

 Zin = T1 + T6 . ADD + T4 . BR + …..

External
inputs

Figure 7.11. Separation of the decoding and encoding functions.

Encoder

Reset
CLK

Clock

Control signals

counter

Run End

Condition
codes

decoder

Instruction

Step decoder

Control step

IR

T1 T2 Tn

INS1

INS2

INSm

Figure 7.2 Generation of the decoding and encoding functions

This signal is asserted during time slot T1 for all instructions, during T6 for an Add

instruction, during T4 for an unconditional branch instruction, and so on. The logic

function for Zin is derived from the control sequences in Figures 5.4 and 5.5. As another

example, Figure 7.4 gives a circuit that generates the End control signal from the logic

function

81

 __

 End = T1 ∙ ADD + T5 ∙ BR + (T5 ∙ N + T4 ∙ .N) ∙ BRN + ….

T1

AddBranch

T4 T
6

Figure 7.3 Generation of the Z in Control signal

Figure 7.13.Generation of the End control signal.

T7

Add Branch
Branch<0

T5

End

NN

T4T5

Figure 7.4 Generation of the End Control signal

82

The End signal starts a new instruction fetch cycle by resetting the control step counter to

its starting value. Figure 7.2 contains another control signal called RUN. When set to 1,

RUN causes the counter to be incremented by one at the end of every clock cycle. When

RUN is equal to 0, the counter stops counting. This is needed whenever the WMFC

signal is issued, to cause the processor to wait for the reply from the memory.

 The control hardware shown in Figure 7.1 or 7.2 can be viewed as a state machine

that changes from one state to another in every clock cycle, depending on the contents of

the instruction register, the condition codes and the external inputs. The outputs of the

state machine are the control signals. The sequence of operations carried out by this

machine is determined by the wiring of the logic elements, hence the name “hardwired”.

A controller that uses this approach can operate at high speed. However, it has little

flexibility and the complexity of the instruction set it can implement is limited.

Check your progress

4. What are the major categories of organizing control unit?

5. With diagram, explain Control unit organization.

6. Explain generation of the End Control signal.

7.6 SUMMARY

 In this unit, we have learnt Hard-wired control.

7.5 KEYWORDS

Hardwired: The sequence of operations carried out is determined by the wiring of the

logic elements.

7.6 ANSWER TO CHECK YOUR PROGRESS

4. 7.1

83

5. 7.2

6. 7.2

7.7 UNIT_END EXCERCISES AND ANSWERS

4. Elucidate generation of the decoding and encoding functions.

 2 Explain the generation of the Z in Control signal.

Answer: See

1. 7.2

2. 7.2

7.8 SUGGESTED READINGS

1. Carl Hamacher, Zvonko Vranesic, Safwat Zaky: Computer Organization, 5
th

 Edition,

 TMH 2002

2. William Stallings: Computer Organization and Architecture, 7
th

 Edition, PHI 2006

3. Vincenet P. Heuring and Harry F. Jordan: Computer Systems Design and

 Architecture, 2
nd

 Edition, Pearson Education, 2004.

84

UNIT 8: MICROPROGRAMMED CONTROL

Structure

8.0 Objectives

8.1 Introduction

8.2 Basics of Microprgrammed Control

8.3 Microinstructions

8.4 Microprogramming Sequencing

8,5 A Microinstruction with Next-Address Field

8.6 Pre fetching Microinstructions

8.7 Emulation

8.8 Summary

8.9 Key words

8.10 Answers to check your progress

8.11 Unit-end exercises and answers

8.12 Suggested readings

8.0 OBJECTIVES

After studying this unit, we will be able to explain:

 Microprogrammed Control

 Microinstructions

 Microprogramming Sequencing

 Pre fetching Microinstructions

 Emulation

8.1 INTRODUCTION

In this unit, we will learn Microprogramming approach and Microprogram organization.

To carry out the execution of instructions, the processor must have some means of

85

generating the control signals needed in the proper sequence. Designers employ a wide

variety of techniques to this purpose. There are two categories of approaches: hardwired

control and microprorgam control. In the rest of this unit, we will focus on

Microprogrammed approach.

8.2 BASICS OF MICROPROGRAMMED CONTROL

We explain here an alternative scheme called micro programmed control, in which

control signals are generated by a program similar to machine language programs.

P
C

in

P
C

o
u

t

M
A

R
in

R
e

a
d

M
D

R
o

u
t

IR
in

Y
in

S
e

le
c
t

A
d
d

Z
in

Z
o

u
t

R
1 o

u
t

R
1

in

R
3 o

u
t

W
M

F
C

E
n
d

0

1

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

1

0

0

1

0

0

0

1

0

0

1

0

0

0

0

0

1

0

0

1

0

0

0

1

0

0

0

0

0

1

0

0

1

0

0

1

0

0

0

0

0

0

1

0

0

0

0

1

0

1

0

0

0

0

1

0

0

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

1

0

0

1

0

0

Micro -
instruction

1

2

3

4

5

6

7

Figure 7.15 An example of microinstructions for Figure 7.6.

Figure 8.1 An example of microinstruction

 We start with introducing some common terms. A control word (CW) is a word

whose individual bits represent the various control signals in Figure 7.2. Each of the

control steps in the control sequence of an instruction defines a unique combination of 1s

and 0s in the CW. The CWs corresponding to the 7 steps of Figure 5.4 are shown in

Figure 8.1. We have assumed that Select Y is represented by Select = 0 and Select1 by

Select = 1. A sequence of CWs corresponding to the control sequence instruction

86

constitutes the micro-routine for that instruction, and the individual control words in this

micro-routine are referred to as microinstructions.

 The micro-routines for all instructions in the instruction set of a computer are

stored in a special memory called the control store. The control unit can generate the

control signals for any instruction by sequentially reading the CWs of the corresponding

micro-routine from the control store. This suggests organizing the control unit as shown

in Figure 8.2. To read the control words sequentially from the control store, a

microprogram counter (μPC) is used. Every time a new instruction is loaded into the IR,

the output of the block labeled “starting address generator” is loaded into the μPC. The

μPC is then automatically incremented by the clock, causing successive microinstructions

to be read from the control store. Hence, the control signals are delivered to various parts

of the processor in the correct sequence.

Figure 7.16. Basic organization of a microprogrammed control unit.

store
Control

generator

Starting
address

CW

Clock PC

IR

Figure 8.2 Basic organization of a microprogrammed control unit

 There is one important function of the control unit that cannot be implemented by

the simple organization in Figure 8.2. This is the situation that arises when the control

unit is required to check the status of the condition codes or external inputs to choose

between alternative courses of action. In the case of hardwired control, this situation is

87

handled by including an appropriate logic function, in the encoder circuitry. In micro

programmed control, an alternative approach is to use conditional branch

microinstructions. In addition to the branch address, these microinstructions specify

which of the external inputs, condition codes, or possibly bits of the instruction register,

should be checked as a condition for branching to take place.

 The instruction Branch-on-negative (Branch<0) may now be implemented by a

micro-routine such as that shown in Figure 8.3. After loading this instruction into IR, a

branch microinstruction transfers control to the corresponding micro-routine, which is

assumed to start at location 25 in the control store. This address is the output of the

starting address generator block in Figure 8.2. The microinstruction at location 25 tests

the N bit of the condition codes. If this bit is equal to 0, a branch takes place to location 0

to fetch a new machine instruction. Otherwise, the microinstruction at location 26 is

executed to put the branch target address into register Z, as in step 4 in Figure 5.5. The

microinstruction in location 27 loads this address into the PC.

 Address Microinstruction

0 PCout, MARin, Read, Select4, Add, Zin

1 Zout, PCin, Yin, WMFC

2 MDRout, IRin

3 Branch to starting address of appropriate microroutine

25 If N=0, then branch to microinstruction 0

26 Offset-field-of-IRout, SelectY, Add, Zin

27 Zout, PCin, End

Figure 8.3 Microroutine for the microinstruction Branch<0

 To support microprogram branching, the organization of the control unit should

be modified as shown in Figure 8.4.

88

Control
store

Clock

generator

Starting and
branch address Condition

codes

inputs
External

CW

IR

PC

Figure 8.4 Organization of the control unit to allowconditional branching in the

microprogram

The starting address generator block of Figure 8.2 becomes the starting and branch

address generator. This block loads a new address into the μPC when a microinstruction

instructs it to do so. To allow implementation of a condition branch, inputs to this block

consist of the external inputs and condition codes as well as the contents of the

instruction register. In this control unit, the μPC is incremented every time a new

microinstruction is fetched from the microprogram memory, except in the following

situations:

1. When a new instruction is loaded into the IR, the μPC is loaded with the

starting address of the microroutine for that instruction,

2. When a Branch microinstruction is encountered and the branch condition is

satisfied, the μ PC is loaded with the branch address.

3. When an End microinstruction is encountered, the μ PC is loaded with the

address of the first CW in the microroutine for the instruction fetch cycle (this

address is 0 in Figure 8.3)

89

8.3 MICROINSTRUCTIONS

 After understanding a scheme for sequencing microinstruction, we now take a

closer look at the format of individual microinstructions. A straightforward way to

structure microinstructions is to assign one bit position to each control signal, as in Figure

8.1.

 However, this scheme has one serious drawback – assigning individual bits to

each control signal results in long microinstructions because the number of required

signals is usually large. Moreover, only a few bits are set to 1 (to be used for active

gating) in any given microinstruction, which means the available bit space is poorly used.

Consider again the simple processor of Figure 5.1 and assume that it contains only four

general purpose registers R0, R1, R2, and R3. Some of the connections in this processor

are permanently enabled, such as the output of the IR to the decoding circuits and both

inputs to the ALU. The remaining connections to various register require a total of 20

gating signals. Additional control signals not shown in the figure are also needed,

including the Read, Write, Select, WMFC and End signals. Finally, we must specify the

function to be performed by the ALU. Let us assume that 16 functions are provided,

including Add, Subtract, AND, and XOR. These functions depend on the particular ALU

used and do not necessarily have a one-to-one correspondence with the machine

instruction OP codes. In total, 42 control signals are needed.

 If we use the simple encoding scheme described earlier, 42 bits would be needed

in each microinstruction. Fortunately, the length of the microinstructions can be reduced

easily. Most signals are not needed simultaneously, and many signals are mutually

exclusive. For example, only one function of the ALU can be activated at a time. The

source for a data transfer must be unique because it is not possible to gate the contents of

two different registers onto the bus at the same time. Read and Write signals to the

memory cannot be active simultaneously. This suggests that signals can be grouped so

that all mutually exclusive signals are placed in the same group. Thus, at most one

microoperation per group is specified in any instruction. Then it is possible to use a

binary coding scheme to represent the signals within the group. For example, four bits

suffice to represent the 16 available functions in the ALU. Register output control signals

90

can be placed in a group consisting of PCout, MDRout, Zout, Offsetout, R0out, R1out, R2out,

R3out and TEMPout. Any one of these can be selected by a unique 4-bit code.

F2 (3 bits)

000: No transf er

001: PCin
010: IRin

011: Zin

100: R0in
101: R1in
110: R2in

111: R3in

F1 F2 F3 F4 F5

F1 (4 bits) F3 (3 bits) F4 (4 bits) F5 (2 bits)

0000: No transf er

0001: PCout

0010: MDRout

0011: Zout

0100: R0out

0101: R1out

0110: R2out

0111: R3out

1010: TEMPout

1011: Of f setout

000: No transf er

001: MARin

010: MDRin

011: TEMPin

100: Yin

0000: Add

0001: Sub

1111: XOR

16 ALU
f unctions

00: No action

01: Read

10: Write

F6 F7 F8

F6 (1 bit) F7 (1 bit) F8 (1 bit)

0: SelectY

1: Select4

0: No action

1: WMFC

0: Continue

1: End

Figure 7.19. An example of a partial format for field-encoded microinstructions.

Microinstruction

Figure 8.5 An example of a partial format for field-encoded microinstruction

 Further, natural groupings can be made for the remaining signals. Figure 8.5

shows an example of a partial format for the microinstructions in which each group

occupies a field large enough to contain the required codes. Most fields must include one

inactive code for the case in which no action is required. For example, the all-zero pattern

in F1 indicates that none of the registers that may be specified in this field should have its

content placed on the bus. An inactive code is not needed in all fields. For example, F4

contains 4 bits that specify one of the 16 operations performed in the ALU. Since no

spare code is included, the ALU is active during the execution of every microinstruction.

However, its activity is monitored by the rest of the machine through register Z which is

loaded only when the Zin signal is activated.

Grouping control signals into fields requires a little more hardware because decoding

circuits must be used to decode the bit pattern of each field into individual control

91

signals. The cost of this additional hardware is more than offset by the reduced number of

bits in each microinstruction, which results in a smaller control store. In Figure 8.5, only

20 bits are needed to store the patterns for the 42 signals.

 So far, we have considered grouping and encoding only mutually exclusive

control signals. We can extend this idea by enumerating the patterns of required signals

in all possible microinstructions. Each meaningful combination of active control signals

can then be assigned a distinct code that represents the microinstruction. Such full

encoding is likely to further reduce the length of microwords but also to increase the

complexity of the required decoder circuits.

 Highly encoded schemes that use compact codes to specify only a small number

of control functions in each microinstruction are referred to as a vertical organization. On

the other hand, the minimally encoded scheme of Figure 8.1 in which many resources can

be controlled with a single microinstruction is called a horizontal organization. The

horizontal approach is useful when a higher operating speed is desired and when the

machine structure allows parallel use of resources. The vertical approach results in

considerably slower operating speeds because more microinstructions are needed to

perform the desired control functions. Although fewer bits are required to each

microinstruction, this does not imply that the total number of bits in the control store is

smaller. The significant factor is that less hardware is needed to handle the execution of

microinstructions.

 Horizontal and vertical organizations represent the two organizational extremes in

microprogrammed control. Many intermediate schemes are also possible in which the

degree of encoding is a design parameter. The layout in Figure 8.5 is a horizontal

organization because it groups only mutually exclusive microoperations in the same

fields. As a result, it does not limit in any way the processor’s ability to perform various

microoperations in parallel.

92

8.4 MICROPROGRAMMING SEQUENCING

The simple microprogram example in Figure 8.1 requires only straightforward

sequential execution of microinstructions except for the branch at the end of fetch phase.

If each machine instruction is implemented by a microcontrol structure suggested in

Figure 8.4 in which μ PC governs the sequencing would be sufficient. A microroutine is

entered by decoding the machine instruction into a starting address that is loaded into the

μ PC. Some branching capability within the microprogram can be introduced through

special branch microinstructions that specify the branch address similar to the way

branching is done in machine-level instructions.

 With this approach, writing microprograms is fairly simple because standard

software techniques can be used. However, this advantage is countered by two major

disadvantages. Having a separate microroutine for each machine instruction results in a

large total number of microinstructions and a large control store. If most machine

instructions involve several addressing modes, there can be many instruction and

addressing mode combinations. A separate microroutine for each of these combinations

would produce considerable duplication of common parts. We want to organize the

microprogram so that the microroutines share as many common parts as possible. This

requires many branch microinstructions to transfer control among the various parts.

Hence, a second disadvantage arises – execution time is longer because it takes more

time to carry out the required branches.

 Consider a more complicated example of a complete machine instruction. In

earlier topic, we used instructions of the type

 Add src, Rdst

which adds the source operand to the contents of register Rdst and places the sum in

Rdst, the destination register. Let us assume that the source operand can be specified in

the following addressing modes; register, autoincrement, autodecrement and indexed as

well as the indirect forms of these four modes. We now use this instruction in conjunction

with the processor structure in Figure 5.1 to demonstrate a possible microprogrammed

implementation.

93

Figure 8.6 Flowchart of a microprogram for the Add sec, Rdst instruction.

A suitable microprogram is presented in flowchart form, for easier understanding

in Figure 8.6. Each box in the flow chart corresponds to a microinstruction that controls

the transfer and operations indicated within the box. The microinstruction is located at the

address indicated by the octal number above the upper right-hand corner of the box. Each

octal digit represents three bits. We use the octal notation in this example as a convenient

shorthand notation for binary numbers.

94

Branch Address Modification Using Bit-Oring

The microprogram in Figure 8.6 shows that branches are not always made to a single

branch address. This is a direct consequence of combining simple microroutines by

sharing common parts. Consider the point labeled a in the figure. At this point, it is

necessary to choose between actions required by direct and indirect addressing modes. If

the indirect mode is specified in the instruction, then the microinstruction in location 170

is performed to fetch the operand from the memory. If the direct mode is specified, this

fetch must be bypassed by branching immediately to location 171. The most efficient

way to bypass microinstruction 170 is to have the preceding branch microinstructions

specify the address 170 and then use an OR gate to change the least-significant bit of this

address to 1 if the direct addressing mode is involved. This is known as the bit-ORing

technique for modifying branch addresses.

 An alternative to the bit-ORing approach is to use two conditional branch

microinstructions at locations 123, 143, and 166. Another possibility is to include two

next address fields within a branch microinstruction, one for the direct and one for the

indirect address modes. Both of these alternatives are inferior to the bit-ORing technique.

Wide-Branch Addressing

 The Figure 8.6 includes a wide branch in the microinstruction at location 003. The

instruction decoder, abbreviated Inst Dec in the figure, generates the starting address of

the microroutine that implements the instruction that has just been loaded into the IR. In

our example, register IR contains the Add instruction, for which the instruction decoder

generates the microinstruction address 101. However, this address cannot be loaded as it

is into the microprogram counter.

 The source operand of the Add instruction can be specified in any of several

addressing modes. The figure shows five possible branches that the add instruction may

follow. From left to right these are the indexed, autodecrement, autoincrement, register

direct, and register indirect addressing modes. The bit-ORing technique described above

95

can be used at this point to modify the starting address generated by the instruction

decoder to reach the appropriate path. For the address shown in the figure, bit-ORing

should change the address 101 to one of the five possible address values 161, 141, 121,

101, or 111, depending on the addressing mode used in the instruction.

Use of WMFC

 We have assumed that it is possible to issue a wait for MFC command in a branch

microinstruction. This is done in the microinstruction at location 112, which causes a

branch to the microinstruction in location 171. Combining these two operations

introduces a subtle problem. The WMFC signal means that the microinstruction may take

several clock cycles to complete. If the branch is allowed to happen in the first clock

cycle, the microinstruction at location 171 would be fetched and executed prematurely.

To avoid this problem, the WMFC signal must inhibit any change in the contents of the

microprogram counter during the waiting period.

Detailed Examination

 Let us examine one path of the flowchart in figure 8.6 in more detail. Consider the

case in which the source operand is accessed in the autoincrement mode. This is the path

needed to execute the instruction

 Add (Rsrc)+, Rdst

where Rsrc and Rdst are general putpose registers in the machine. Figure 8.7 shows the

complete microroutine for fetching and executing this instruction. We assume that the

instruction has a 3-bit field used to specify the addressing mode for the source operand,

as shown. Bit patterns 11, 10, 01, and 00 located in bit 10 and 9, denote the indexed,

autodecrement, autoincrement and register modes, respectively. For each of these modes,

bit 8 is used to specify the indirect version. For example, 010 in the mode field specify

the direct version of the autoincrement mode, whereas 011 specify the indirect version.

We also assume that the processor has 16 registers that can be used for addressing

purposes each specified using a 4-bit code. Thus, the source operand is fully specified

using the mode field and the register indicated by bits 7 through 4. The destination

operand is in the register by bits 3 through 0.

96

OP code 0 1 0 Rsrc Rdst

Mode

Contents of IR

034781011

Address Microinstruction
(octal)

000 PCout, MARin, Read, Select4, Add, Zin

001 Zout, PCin, Yin, WMFC

002 MDRout, IRin

003 Branch {PC 101 (from Instruction decoder);

PC5,4
 [IR10,9]; PC3



121 Rsrcout, MARin , Read, Select4, Add, Zin

122 Zout, Rsrcin

123

170 MDRout, MARin, Read, WMFC

171 MDRout, Yin

172 Rdstout, SelectY, Add, Zin

173 Zout, Rdstin, End

[IR10]  [IR9]  [IR8]}

Branch {PC 170;PC0 [IR8]}, WMFC

Figure 8.7 Microinstruction for Add (Rsrc)+, Rdst.

Since any of the 16 general-purpose registers may be involved in determining the

source and destination operand locations, the microinstructions refer to the respective

control signals only as Rsrcout, Rdsstout, and Rdstin. These signals must be translated into

specific register transfer signals by the decoding circuitry connected to the Rsrc and Rdst

address fields of the IR. This means that there are two stages of decoding. First, the

microinstruction field must be decoded to determine that an Rsrc or Rdst register is

involved. The decoded output is then used to gate the contents of the Rsrc or Rdst fields

in the IR into a second decoder, which produces the gating signals for the actual registers

R0 to R15.

 The microprogram in Figure 8.6 has been derived by combining the microroutines

for all possible values in the mode field, resulting in a structure that requires many branch

points. The example in Figure 8.7 has two branch points, so two branch microinstructions

97

are required. In each case, the expression in brackets indicates the branch address that is

to be loaded into the μPC and how this address is modified using the bit-ORing scheme.

Consider the microinstruction at location 123 as an example. Its unmodified version

causes another fetch from the main memory corresponding to an indirect addressing

mode. For a direct addressing mode, this fetch is bypassed by ORing the inverse of the

indirect bit in src address field (bit 8 in the IR) with the 0 bit position of the μPC.

 Another example of the use of ORing is the microinstruction in location 003.

There are five starting addresses for the microroutine that implements the Add instruction

in question, depending on the address mode specified for the source operand.

 These addresses differ in the middle octal digit only. Hence, the required branch

is implemented by using bit-ORing to modify octal digit of the pattern 101 obtained from

the instruction decoder. The 3 bits to be ORed with this digit are supplied by the

decoding circuitry connected to the src address mode field (bits 8, 9, and 10 of the IR).

Microinstruction addresses have been chosen to make this modification easy to

implement bits 4 and 5 of the μ PC are set directly from bits 9 and 10 in the IR. This

suffices to select the appropriate microinstruction for all src address modes except one.

The register indirect mode is covered by setting bit 3 of the μPC to 1 when [
10



IR] ∙ [

9



IR] ∙ [IR8] is equal to 1. Register indirect is a special case because it is only indirect

mode that does not use the microinstruction at 170.

8.5 MICROINSTRUCTIONS WITH NEXT-ADDRESS FIELD

 The microprogram in Figure 8.5 requires several branch microinstructions. These

microinstructions perform no useful operation in the datapath; they are needed only to

determine the address of the next microinstruction. Thus, they detract from the operating

speed of the computer. The situation can become significantly worse when other

microroutines are considered. The increase in branch microinstructions stems partly from

limitations in the ability to assign successive addresses to all microinstructions that are

generally executed in consecutive order.

98

This problem prompts us to reevaluate the sequencing technique built around an

incrementable μ PC. A powerful alternative is to include an address field as a part of

every microinstruction to indicate the location of the next microinstruction to be fetched.

This means, in effect, that every microinstruction becomes a branch microinstruction, in

addition to its other functions.

The flexibility of this approach comes at the expense of additional bits for the address

field. The severity of this penalty can be assessed as follows; in a typical computer, it is

possible to design a complete microprogram with fewer than 4K microinstructions,

employing perhaps 50 to 80 bits per microinstruction. This implies that an address field

of 12 bits is required. Therefore, approximately one-sixth of the control store capacity

would be devoted to addressing. Even if more extensive microprograms are needed, the

address field would be only slightly larger.

 The most obvious advantage of this approach is that separate branch

microinstructions are virtually eliminated. Furthermore, there are few limitations in

assigning addresses to microinstructions. These advantages more than offset any negative

attributes and make the scheme very attractive. Since each instruction contains the

address of the next instruction, there is no need for a counter to keep track of sequential

addresses. Hence, the μ PC is replaced with a microinstruction address register (μAR)

which is loaded from the next-address field in each microinstruction. A new control

structure that incorporates this feature and supports bit-ORing is shown in Figure 8.8.

The next-address bits are fed through the OR gates to the μAR so that the address can be

modified on the basis of the data in the IR, external inputs, and condition codes. The

decoding circuits generate the starting address of a given microroutine on the basis of the

OP code in the IR.

99

Figure 7.22. Microinstruction-sequencing organization.

Condition
codes

IR

Decoding circuits

Control store

Next address

Microinstruction decoder

Control signals

Inputs
External

AR

 I R

Figure 8.8 Microinstruction-sequencing organization

 Let us now reconsider the example of Figure 8.7 using the Microprogrammed

control structure of Figure 8.8. We need several control signals that are not included in

the microinstruction format in Figure 8.5. Instead of referring to registers R0 to R15

explicitly, we use the names Rsrc and Rdst which can be decoded into actual control

signals with the data in the src and dst fields of the IR. Branching with the bit-ORing

technique requires that we include the appropriate commands in the microinstructions. In

the flowchart of Figure 8.6, bit-ORing is needed in microinstruction 003 to determine the

address of the next microinstruction based on the addressing mode of the source operand.

The addressing mode is indicated by bits 8 through 10 of the instruction register, as

shown in Figure 8.6. Let the signal ORmode control whether or not this bit-ORing is used.

In microinstructions 123, 143, and 166, bit-ORing is used to decide indirect addressing of

the source operand that is to be used. We use the signal ORindex for this purpose.

100

F1 (3 bits)

000: No transf er

001: PCout

010: MDRout

011: Zout

100: Rsrcout

101: Rdstout

110: TEMPout

F0 F1 F2 F3

F0 (8 bits) F2 (3 bits) F3 (3 bits)

000: No transf er

001: PCin
010: IRin

011: Zin
100: Rsrcin

000: No transf er

001: MARin

F4 F5 F6 F7

F5 (2 bits)F4 (4 bits) F6 (1 bit)

0000: Add

0001: Sub

0: SelectY

1: Select4

00: No action

01: Read

Microinstruction

Address of next

microinstruction

101: Rdstin

010: MDRin

011: TEMPin

100: Yin

1111: XOR

10: Write

F8 F9 F10

F8 (1 bit)

F7 (1 bit)

F9 (1 bit) F10 (1 bit)

0: No action

1: WMFC

0: No action

1: ORindsrc

0: No action

1: ORmode

0: NextAdrs

1: InstDec

Figure 7.23.Format for microinstructions in the example of Section 7.5.3.

Figure 8.9 Format for microinstructions in the example of this Section

 For simplicity, we use separate bits in the microinstructions to denote these

signals. One bit in the microinstruction is used to indicate when the output of the

instruction decoder is to be gated into the μ AR. Finally, each microinstruction contains

an 8-bit field that holds the address of the next microinstruction. Figure 8.9 shows a

complete format for these microinstructions.

101

(See Figure 7.23 for encoded signals.)

Figure 7.24. Implementation of the microroutine of Figure 7.21 using a

1

0

1

11110

0111110

001

001

1

21 0

00

0

00

0

0

0

0

0

0

0

0

0

0

0 0

0

0

00

0 0

0101

110

37

7

00000000

0 1111

110

0

0

0

17

07

F9

0

0

0

0

0

0

F10

0

0

0

0

0

0

00

0

0

0

0

0

0

F8F7F6F5F4

000 0 0 0 0 0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0 1

1

0

0

0 0

1

0

0

0

10000

0000

1100000

10

0

0

0

0

0

0

1

0 0

0

0

0

0

0

00 01

000

000

001

110

100

10

F2

1

110 0 0 0 0 0

1

1

221

0

11110

111 00

1

1

2

0

21

0

00

address

Octal

111 00000

1 0000000

10000000

F0 F1

0

0 0 10 0

010

010

0 11

001

110

100

0

0

0

1

1

0

1

F3

 next-microinstruction address field.

011000 0 0 0 0 00 00 00000 0 0 0 0 030 0 00 0 0

Figure 8.10 Implementation of the microroutine of Figure 8. 7 using next-

microinstruction address filed

This format is an expansion of the format in Figure 8.5. Using such microinstructions, we

can implement the Microroutine of Figure 8.7 as shown in Figure 8.10. The revised

routine has one less microinstruction. The branch microinstruction at location 123 has

been combined with the microinstruction immediately preceding it. When

microinstruction sequencing is controlled by a μPC, the End signal is used to reset the

μPC to point to the starting address of the microinstruction. That fetches the next machine

instruction to be executed. In our example, this starting address is 0008. However, the

Microroutine in Figure 8.10 does not terminate by producing the End signal. In an

organization such as this, the starting address is not specified by a resetting mechanism

triggered by the End signal – instead, it is specified explicitly in the FO field.

102

decoder

Microinstruction

Control store

Next address F1 F2

Other control signals

F10F9F8

Decoder

Decoder

circuits
Decoding

Condition

External

codes

inputs

Rsrc RdstIR

Rdstout

Rdstin

Rsrcout

Rsrcin

AR

InstDecout

ORmode

ORindsrc

R15in R15out R0in R0out

Figure 7.25. Some details of the control-signal-generating circuitry.

Figure 8.11 Details of the circuitry that generates the control signals in Figure 8.8

Figure 8.12 Control circuitry for bit-ORing

103

Figure 8.11 gives a more detailed diagram of the control structure of Figure 8.8. It shows

how control signals can be decoded from the microinstruction fields and used to control

sequencing. Detailed circuitry for bit-ORing is shown in Figure 8.12.

8.6 PREFETCHING MICROINSTRUCTIONS

 One drawback of Microprogrammed control is that it leads to a slower operating

speed because of the time it takes to fetch microinstructions from the control store. Faster

operation is achieved if the next microinstruction is prefetched while the current one is

being executed. In this way, the execution time can be overlapped with the fetch time.

Prefetching microinstructions presents some organizational difficulties. Sometimes the

status flags and the results of the currently executed microinstruction are needed to

determine the address of the next microinstruction. Thus, straightforward prefetching

occasionally prefetches a wrong microinstruction. In these cases, the fetch must be

repeated with the correct address, which requires more complex hardware. However, the

disadvantages are minor and the prefetching technique is often used.

8.7 EMULATION

 The main function of Microprogrammed control is to provide a means for simple,

flexible and relatively inexpensive execution of machine instructions. However, it also

offers other interesting possibilities. Its flexibility in using a machine’s resources allows

diverse classes of instructions to be implemented. Given a computer with a certain

instruction set, it is possible to define additional machine instructions and implement

them with extra microroutines.

 An extension of the preceding idea leads to another interesting possibility.

Suppose, we add to the instruction repertoire of a given computer, M1, an entirely new

set of instructions that is in fact the instruction set of a different computer, M2. Programs

written in the machine language of M2 can then be run on Computer M1, that is M1

emulates M2. Emulation allows us to replace obsolete equipment with more up-to-date

104

machines. If the replacement computer fully emulates the original one, then no software

changes have to be made to run existing programs. Thus, emulation facilitates transitions

to new computer systems with minimal disruption.

Emulation is easiest when the machines involved have similar architectures. However,

emulation can also succeed using machines with totally different architectures.

Check your progress:

1. What is a microinstruction?

2. What is emulation?

3. What do you mean by bit-ORing?

4. Explain wide-branch addressing.

5. What is prefetching?

8.8 SUMMARY

 In this unit, we have learnt Microprogrammed Control, Microinstructions and

Microprogram Sequencing, Wide Branch Addressing, Microinstructions with Next-

Address Field, Prefetching Microinstructions and Emulation.

8.9 KEY WORDS

CW: A control word (CW) is a word whose individual bits represent the various control

signals.

Control store: The micro-routines for all instructions in the instruction set of a computer

are stored in a special memory called the control store.

8.10 ANSWERS TO CHECK YOUR PROGRESS

1 8.2

2 8.7

3 8.4

105

4 8.4

5 8.6

8.11 UNIT-END EXERCISES AND ANSWERS

1. Elucidate Microprogrammed control.

2. Explain program sequencing.

3. Explain A Microinstruction with Next-Address Field.

4. Discuss about a vertical organization and a horizontal organization.

Answer: See

1 8.2

2 8.4

3 8.5

4 8.3

8.12 SUGGESTED READINGS

1. Carl Hamacher, Zvonko Vranesic, Safwat Zaky: Computer Organization, 5
th

 Edition,

 TMH 2002

2. William Stallings: Computer Organization and Architecture, 7
th

 Edition, PHI 2006

3. Vincenet P. Heuring and Harry F. Jordan: Computer Systems Design and

 Architecture, 2
nd

 Edition, Pearson Education, 2004.

106

UNIT 9: INTRODUCTION TO INPUT/OUTPUT DEVICES

Structure

9.0 Objectives

9.1 Introduction

9.2 Accessing I/O devices

9.3 Memory mapped I/O devices

9.4 I/O mapped I/O devices

9.5 I/O interfacing with an input device

9.6 Mechanisms for interfacing I/O devices

9.7 Summary

9.8 Keywords

9.9 Answers to check your progress

9.10 Unit-end exercises and answers

9.11 Suggested readings

9.0 OBJECTIVES

After studying this unit, you will be able to

 Understand how program-controlled I/O is performed using polling.

 NMB

 NMBMN

 BMNBMN

 GFGHF

9.1 INTRODUCTION

One of the basic features of a computer is its ability to exchange data with other

devices. This communication capability enables a human operator, for example, to use a

keyboard and a display screen to process text and graphics. We make extensive use of

107

computers to communicate with other computers over the Internet and access information

around the globe. In other applications, computers are less visible but equally important.

They are an integral part of home appliances, manufacturing equipment, transportation

systems, banking and point-of-sale terminals. In such applications, input to a computer

may come from a sensor switch, a digital camera, a microphone, or a fire alarm. Output

may be a sound signal to be sent to a speaker or a digitally coded command to change the

speed of a motor, open a valve, or cause a robot to move in a specified manner. In short, a

general-purpose computer should have the ability to exchange information with a wide

range of devices in varying environments.

9.2 ACCESSING I/O DEVICES

A simple arrangement to connect I/O devices to a computer is to use a single bus

arrangement, as shown in Figure 9.1. The bus enables all the devices connected to it to

exchange information. Typically, it consists of three sets of lines used to carry address,

data, and control signals. Each I/O device is assigned a unique set of addresses. When the

processor places a particular address on the address lines, the device that recognizes this

address responds to the commands issued on the control lines. The processor requests

either a read or a write operation, and the requested data are transferred over the data

lines. When I/O devices and the memory share the same address space, the arrangement

is called memory-mapped I/O.

Figure 9.1: A single-bus structure

108

With memory-mapped I/O, any machine instruction that accesses memory can be

used to transfer data to or from an I/O device. For example, if DATAIN is the address of

the input buffer associated with the keyboard, the instruction

Move DATAIN, RO

reads the data from DATAIN and stores them into processor register RO. Similarly, the

instruction

Move RO, DATAOUT

sends the contents of register RO to location DATAOUT, which may be the output data

buffer of a display unit or a printer.

 Most computer systems use memory-mapped I/O. Some processors have special

In and Out instructions to perform I/O transfers. For example, processors in the Intel have

special I/O instructions and a separate 16-bit address space for I/O devices. When

building a computer system based on these processors, the designer has the option of

connecting I/O devices to use the special I/O address space or simply incorporating them

as part of the memory address space. The latter approach is by far the most common as it

leads to simpler software. One advantage of a separate I/O address space is that I/O

devices deal with fewer address lines. Note that a separate I/O address space does not

necessarily mean that the I/O address lines are physically separate from the memory

address lines. A special signal on the bus indicates that the requested read or write

transfer is an I/O operation. When this signal is asserted, the memory unit ignores the

requested transfer. The I/O devices examine the low-order bits of the address bus to

determine whether they should respond.

 Figure 9.2 illustrates the hardware required to connect an I/O device to the bus.

The address decoder enables the device to recognize its address when this address

appears on the address lines. The data register holds the data being transferred to or from

the processor. The status register contains information relevant to the operation of the I/O

device. Both the data and status registers are connected to the data bus and assigned

unique addresses. The address decoder, the data and status registers, and the control

circuitry required to coordinate I/O transfers constitute the device's interface circuit.

 I/O devices operate at speeds that are vastly different from that of the processor.

When a human operator is entering characters at a keyboard, the processor is capable of

109

executing millions of instructions between successive character entries. An instruction

that reads a character from the keyboard should be executed only when a character is

available in the input buffer of the keyboard interface. Also, we must make sure that an

input character is read only once.

Figure 9.2: I/O interface for an input device

9.3 MEMORY MAPPED I/O DEVICES

 Memory-mapped I/O uses the same address bus to address both memory and I/O

devices, the memory and registers of the I/O devices are mapped to address values, as

shown in Figure 1.3. So, when an address is accessed by the CPU, it may refer to a

portion of physical RAM, but it can also refer to memory of the I/O devices. Thus, the

CPU instructions used to access the memory can also be used for accessing devices. Each

I/O device monitors the CPU's address bus and responds to any CPU access of an address

assigned to that device, connecting the data bus to the desired device's hardware register.

To accommodate the I/O devices, areas of the addresses used by the CPU must be

reserved for I/O and must not be available for normal physical memory. The reservation

might be temporary.

One merit of memory-mapped I/O is that, by discarding the extra complexity that port

I/O brings, a CPU requires less internal logic and is thus cheaper, faster, easier to build,

consumes less power and can be physically smaller; this follows the basic tenets

110

of reduced instruction set computing, and is also advantageous in embedded systems. The

other advantage is that, because regular memory instructions are used to address devices,

all of the CPU's addressing modes are available for the I/O as well as the memory, and

instructions that perform an ALU operation directly on a memory operand — loading an

operand from a memory location, storing the result to a memory location, or both, can be

used with I/O device registers as well. In contrast, port-mapped I/O instructions are often

very limited, often providing only for simple load and store operations between CPU

registers and I/O ports, so that, for example, to add a constant to a port-mapped device

register would require three instructions: read the port to a CPU register, add the constant

to the CPU register, and write the result back to the port.

As 16-bit processors have become obsolete and replaced with 32-bit and 64-bit in general

use, reserving ranges of memory address space for I/O is less of a problem, as the

memory address space of the processor is usually much larger than the required space for

all memory and I/O devices in a system. Therefore, it has become more frequently

practical to take advantage of the benefits of memory-mapped I/O.

Memory-mapped I/O is preferred in x86-based architectures because the instructions that

perform port-based I/O are limited to one register: EAX, AX, and AL are the only

registers that data can be moved in to or out of, and either a byte-sized immediate value

in the instruction or a value in register DX determines which port is the source or

destination port of the transfer. Since any general purpose register can send or receive

data to or from memory and memory-mapped I/O, memory-mapped I/O uses less

instructions and can run faster than port I/O. AMD did not extend the port I/O

instructions when defining the x86-64 architecture to support 64-bit ports, so 64-bit

transfers cannot be performed using port I/O.

111

Figure 1.3: Memory mapped I/O device Structure

9.4 I/O MAPPED I/O DEVICES

I/O mapped I/O devices is also known as port mapped I/O devices. Port-mapped I/O

often uses a special class of CPU instructions specifically for performing I/O. This is

found on Intel microprocessors, with the IN and OUT instructions. These instructions can

read and write one to four bytes to an I/O device. I/O devices have a separate address

space from general memory, either accomplished by an extra "I/O" pin on the CPU's

physical interface, or an entire bus dedicated to I/O. Because the address space for I/O is

isolated from that for main memory, this is sometimes referred to as isolated I/O.

A device's direct memory access (DMA) is not affected by CPU-to-device

communication methods, like memory mapping. This is because by definition DMA is a

memory-to-device communication method that bypasses the CPU.

112

9.5 I/O INTERFACING FOR AN INPUT DEVICE

The I/O interface consists of the circuitry required to transfer data between the

computer bus and an I/O device. Therefore, on one side of the interface we have the bus

signals for address, data, and control. On the other side we have a data path with its

associated controls, which enables transfer of data between the interface and an I/O

device. This side is device-dependent. However, it can be classified as either a parallel or

a serial interface. A parallel interface transfers data in the form of one or more bytes

simultaneously to or from the device. A serial interface transmits and receives data one

bit at a time. Communication with the bus is the same for both formats; the conversion

from parallel to the serial format, and vice versa, takes place inside the interface circuit.

9.6 MECHANISMS FOR INTERFACING I/O DEVICES

Parallel Interface

 Figure 9.4 shows a scheme for connecting a keyboard to a processor. A typical

keyboard consists of mechanical switches that are normally open. When a key is pressed,

its switch closes and establishes a path for an electrical signal. This signal is detected by

an encoder circuit that generates the ASCII code for the corresponding character.

The output from the encoder consists of the bits that represent an encoded

character and one control signal, called Valid, which indicates that a key is being

pressed. This information is sent to the input interface. The interface contains data

register, DATAIN, and a status flag, SIN. When a key is pressed, the Valid signal

changes from 0 to 1. This causes the ASCII code to be loaded into the DATAIN and SIN

to be set to 1. The status flag SIN is cleared to 0 when the processor reads the contents of

the DATAIN register. The I/O interface is connected to the asynchronous bus on which

transfers are controlled using the handshake signals Ready and Accept, as indicated in

Figure 9.4. The third control line, R/W distinguishes read and write transfers.

113

 Data

Address Data

R/W

Ready

Accept Valid

Figure 9.4 Keyboard connected to processor

Serial Interface

 A serial interface is used to connect the processor to I/O devices that require

transmission of data one bit at a time. The key feature of serial interface is a circuit

capable of communicating in bit-serial fashion on the device side and in bit-parallel

fashion on the bus side. Transformation between parallel and serial formats is achieved

with shift registers that have parallel access capability. As shown in Figure 9.5, it

includes the familiar DATAIN and DATAOUT registers. The input shift register accepts

bit-serial input from the I/O device. When all 8 bits of data have been received, the

contents of this shift register are loaded in parallel into the DATAIN register. Similarly,

output data in the DATAOUT register are loaded into the output shift register, from

which the bits are shifted out and sent to the I/O device.

 The status flag SIN and SOUT are used as if SIN is set to 1 when new data are

loaded into DATAIN; it is cleared to 0 when processor reads the contents of DATAIN.

The SOUT flag indicates whether the output buffer is available. It is cleared to 0 when

the processor writes new data into the DATAOUT register and set to 1 when data are

transferred from DATAOUT into the output shift register.

Processor

 Input

 Interface

Encoder

and

debouncing

circuit

Keyboard

switches

 SIN

DATAIN

114

Fig 9.5 A Serial interface

DMA

Implemented with special controller that transfers data between memory and I/O device

independent of the processor

Three steps in DMA transfers:

1. Processor sets up the DMA transfer by supplying identity of device, operation to

perform, memory address that is source or destination of data, number of bytes to be

transferred.

2. DMA controller starts the operation (arbitrates for the bus, supplies address, reads or

writes data), until the entire block is transferred.

115

3. DMA controller interrupts the processor, which then takes the necessary actions.

Check your progress:

1 What is DMA?

2 What is serial interface.

3 Explain I/O interfacing for an input device.

9.7 SUMMARY

 In this unit, we have discussed the three basic approaches for I/O transfers. The

simplest technique is programmed I/O in which the processor performs all the necessary

control functions under direct control of program instructions.

9.8 KEYWORDS

Interface

I / O Device

 I / O transfers

DMA: Direct Memory Access

9.9 ANSWERS TO CHECK YOUR PROGRESS

1 9.6

2 9.6

3 9.5

9.9 UNIT END EXERCISES AND ANSWERS

1. Explain access memory I/O devices.

116

2. Differentiate between Memory mapped I/O devices and I/O mapped I/O devices

3. Explain the mechanism for interfacing I/O devices.

Answer: SEE

1 9.3

2 9.3 and 9.4

3 9.6

9.10 SUGGESTED READINGS

Text Book:

Computer Organization – Carl Hamacher, ZvonkoVranesic, SafwatZaky, MGH

publications, Fifth Edition, 2002.

Reference Books:

Digital logic and computer design: Morris Mano, PHI, 23
rd

 Reprint, October 2000.

Ronald J Toci, Digital Systems – Principles and Applications, 5th edition, PHI, 1992.

117

UNIT – 10: INTERRUPTS

Structure

10.0 Objectives

10.1 Introduction

10.2 Interrupt I/O

10.3 Enabling and disabling interrupts

10.4 Handling multiple devices

10.5 Vectored interrupts

10.6 Interrupts nesting

10.7 Priority structures

10.8 Controlling device requests

10.9 Keywords

10.10 Summary

10.11 Answer to check your progress

10.12 Unit-end exercises and answers

10.13 Suggested readings

10.0 OBJECTIVES

After studying this unit, you should be able to:

 Explain how to generate the appropriate timing signals required by the bus control

scheme.

 Explain how the processor can recognize the device requesting an interrupt.

 Elucidate how different devices are likely to require different interrupt -service

routines.

 Discuss how can the processor obtain the starting address of the appropriate

routine in each case?

118

 Explain if a device is to be allowed to interrupt the processor while another

interrupt is being serviced?

 Discuss how should two or more simultaneous interrupt requests be handled?

10.1 INTRODUCTION

 Let us now consider the situation where a number of devices capable of initiating

interrupts are connected to the processor. Because these devices are operationally

independent, there is no definite order in which they will generate interrupts. For

example, device X may request an interrupt while an interrupt caused by device Y is

being serviced, or several devices may request interrupts at exactly the same time.

10.2 INTERRUPT I/O

 Let us consider a situation when a program enters a wait loop in which it

repeatedly tests the device status. During this period, the processor is not performing any

useful computation. There are many situations where other tasks can be performed while

waiting for an I/O device to become ready. To allow this to happen, we can arrange for

the I/O device to alert the processor when it becomes ready. It can do so by sending a

hardware signal called an interrupt to the processor. At least one of the bus control lines,

called an interrupt-request line, is usually dedicated for this purpose. Since the processor

is no longer required to continuously check the status of external devices; it can use the

waiting period to perform other useful functions. Indeed, by using interrupts, such

waiting periods can ideally be eliminated.

 Consider a task that requires some computations to be performed and the results

to be printed on a line printer. This is followed by more computations and output, and so

on. Let the program consist of two routines, COMPUTE and PRINT. Assume that

COMPUTE produces a set of n lines of output, to be printed by the PRINT routine.

119

The required task may be performed by repeatedly executing first the COMPUTE

routine and then the PRINT routine. The printer accepts only one line of text at a time.

Hence, the PRINT routine must send one line of text, wait for it to be printed, and then

send the next line, and so on, until all the results have been printed. The disadvantage of

this simple approach is that the processor spends a considerable amount of time waiting

for the printer to become ready. If it is possible to overlap printing and computation, that

is, to execute the COMPUTE routine while printing is in progress, a faster overall speed

of execution will result. This may be achieved as follows. First, the COMPUTE routine is

executed to produce the first n lines of output. Then, the PRINT routine is executed to

send the first line of text to the printer. At this point, instead of waiting for the line to be

printed the PRINT routine may be temporarily suspended and execution of the

COMPUTE routine continued. Whenever the printer becomes ready, it alerts the

processor by sending an interrupt-request signal. In response, the processor interrupts

execution of the COMPUTE routine and transfers control to the PRINT routine. The

PRINT routine sends the second line to the printer and is again suspended. Then the

interrupted COMPUTE routine resumes execution at the point of interruption. This

process continues until all n lines have been printed and the PRINT routine ends.

The PRINT routine will be restarted whenever the next set of n lines is available

for printing. If COMPUTE takes longer to generate n lines than the time required to print

them, the processor will be performing useful computations all the time.

This example illustrates the concept of interrupts. The routine executed in

response to an interrupt request is called the interrupt-service routine, which is the PRINT

routine in our example. Interrupts bear considerable resemblance to subroutine calls.

Assume that an interrupt request arrives during execution of instruction in Figure 10.1.

120

Figure 10.1: Transfer of control through the use of interrupts

The processor first completes execution of instruction i. Then, it loads the

program counter with the address of the first instruction of the interrupt-service routine.

For the time being, let us assume that this address is hardwired in the processor. After

execution of the interrupt-service routine, the processor has to come back to instruction i

+ 1. Therefore, when an interrupt occurs, the current contents of the PC, which point to

instruction i + 1, must be put in temporary storage in a known location. A Return – from

intenupt instruction at the end of the interrupt-service routine reloads the PC from that

temporary storage location, causing execution to resume at instruction i + 1. In many

processors, the return address is saved on the processor stack. Alternatively, it may be

saved in a special location, such as a register provided for this purpose.

 We should note that as part of handling interrupts, the processor must inform the

device that its request has been recognized so that it may remove its interrupt-request

signal. This may be accomplished by means of a special control signal on the bus. An

interrupt-acknowledge signal, used in some of the interrupt schemes to be discussed later,

serves this function. A common alternative is to have the transfer of data between the

processor and the I/O device interface accomplish the same purpose. The execution of an

121

instruction in the interrupt -service routine that accesses a status or data register in the

device interface implicitly informs the device that its interrupt request has been

recognized.

 We pointed out that an I/O device requests an interrupt by activating a bus line

called interrupt-request. Most computers are likely to have several I/O devices that can

request n interrupts. A single interrupt -request line may be used to serve n devices as

depicted in Figure 9.2. All devices are connected to the line via switches to ground. To

request an interrupt, a device closes its associated switch. Thus, if all interrupt-request

signals INTR1 to INTRn are inactive, that is, if all switches are open, the voltage on the

interrupt-request line will be equal to Vdd. This is the inactive state of the line. When a

device requests an interrupt by closing its switch, the voltage on the line drops to 0,

causing the interrupt-request signal, INTR, received by the processor to go to 1.

Figure 10.2: An equivalent circuit for an open-drain bus used to implement a common

Interrupt-request line

Since the closing of one or more switches will cause the line voltage to drop to 0, the

value of INTR is the logical OR of the requests from individual devices, that is,

INTR = INTR1 +... + INTRn

It is customary to use the complemented form, INTR, to name the interrupt-request signal

on the common line, because this signal is active in the low-voltage state.

122

10.3 ENABLING AND DISABLING INTERRUPTS

The facilities provided in a computer must give the programmer complete control

over the events that take place during program execution. The arrival of an interrupt

request from an external device causes the processor to suspend the execution of one

program and start the execution of another. Because interrupts can arrive at any time,

they may alter the sequence of events from that envisaged by the programmer. Hence, the

interruption of program execution must be carefully controlled. A fundamental facility

found in all computers is the ability to enable and disable such interruptions as desired.

There are many situations in which the processor should ignore interrupt requests.

For example, in the case of the Compute-Print program of Figure 10.1, an interrupt

request from the printer should be accepted only if there are output lines to be printed.

After printing the last line of a set of n lines, interrupts should be disabled until another

set becomes available for printing. In another case, it may be necessary to guarantee that

a particular sequence of instructions is executed to the end without interruption because

the interrupt-service routine may change some of the data used by the instructions in

question. For these reasons, some means for enabling and disabling interrupts must be

available to the programmer. A simple way is to provide machine instructions, such as

Interrupt-enable and Interrupt-disable that perform these functions.

10.4 HANDLING MULTIPLE DEVICES:

 When a request is received over the common interrupt-request line in

Figure 9.2, additional information is needed to identify the particular device that activated

the line. Furthermore, if two devices have activated the line at the same time, it must be

possible to break the tie and select one of the two requests for service. When the

interrupt-service routine for the selected device has been completed, the second request

can be serviced. The information needed to determine whether a device is requesting an

interrupt is available in its status register. When a device raises an interrupt request, it

123

sets to 1 one of the bits in its status register, which we will call the Interrupt Request

(IRQ) bit. For example, bits KIRQ and DIRQ in Figure 9.2., are the interrupt request bits

for the keyboard and the display, respectively. The simplest way to identify the

interrupting device is to have the interrupt-service routine poll all the I/O devices

connected to the bus. The first device encountered with its IRQ bit set is the device that

should be serviced. An appropriate subroutine is called to provide the requested service.

 The polling scheme is easy to implement. Its main disadvantage is the time spent

interrogating the IRQ bits of all the devices that may not be requesting any service. An

alternative approach is to use vectored interrupts.

10.5 VECTORED INTERRUPTS:

To reduce the time involved in the polling process, a device requesting an

interrupt may identify itself directly to the processor. Then, the processor can

immediately start executing the corresponding interrupt-service routine. The term

vectored interrupts refers to all interrupt -handling schemes based on this approach.

A device requesting an interrupt can identify itself by sending a special code to

the processor over the bus. This enables the processor to identify individual devices even

if they share a single interrupt-request line. The code supplied by the device may

represent the starting address of the interrupt-service routine for that device. The code

length is typically in the range of 4 to 8 bits. The remainder of the address is supplied by

the processor based on the area in its memory where the addresses for interrupt-service

routines are located.

This arrangement implies that the interrupt-service routine for a given device

must always start at the same location. The programmer can gain some flexibility by

storing in this location an instruction that causes a branch to the appropriate routine. In

many computers, this is done automatically by the interrupt-handling mechanism. The

location pointed to by the interrupting device is used to store the starting address of the

interrupt-service routine. The processor reads this address, called the interrupt vector, and

124

loads it into the PC. The interrupt vector may also include a new value for the processor

status register.

10. 6 INTERRUPTS NESTING:

 We suggested in earlier Section that interrupts should be disabled during the

execution of an interrupt – service routine, to ensure that a request from one device will

not cause more than one interruption. The same arrangement is often used when several

devices are involved, in which case execution of a given interrupt-service routine, once

started, always continues to completion before the processor accepts an interrupt request

from a second device. Interrupt-service routines are typically short, and the delay they

may cause is acceptable for most simple devices.

For some devices, however, a long delay in responding to an interrupt request

may lead to erroneous operation. Consider, for example, a computer that keeps track of

the time of day using a real-time clock. This is a device that sends interrupt requests to

the processor at regular intervals. For each of these requests, the processor executes a

short interrupt-service routine to increment a set of counters in the memory that keep

track of time in seconds, minutes, and so on. Proper operation requires that the delay in

responding to an interrupt request from the real-time clock be small in comparison with

the interval between two successive requests. To ensure that this requirement is satisfied

in the presence of other interrupting devices, it may be necessary to accept an interrupt

request from the clock during the execution of an interrupt-service routine for another

device.

The above example suggests that I/O devices should be organized in a priority

structure. An interrupt request from a high-priority device should be accepted while the

processor is servicing another request from a lower-priority device. A multiple-level

priority organization means that during execution of an interrupt-service routine, interrupt

requests will be accepted from some devices but not from others, depending upon the

device's priority. To implement this scheme, we can assign a priority level to the

processor that can be changed under program control. The priority level of the processor

is the priority of the program that is currently being executed. The processor accepts

125

interrupts only from devices that have priorities higher than its own. At the tie the

execution of an interrupt -service routine for some device is started, the priority of the

processor is raised to that of the device. This action disables interrupts from devices at the

same level of priority or lower. However, interrupt requests from higher-priority devices

will continue to be accepted.

Figure 10.3: Implementation of interrupt priority using individual interrupt-request

and acknowledge lines

A multiple-priority scheme can be implemented easily by using separate interrupt-

request and interrupt-acknowledge lines for each device, as shown in Figure 10.3. Each

of the interrupt-request lines is assigned a different priority level. Interrupt requests

received over these lines are sent to a priority arbitration circuit in the processor. A

request is accepted only if it has a higher priority level than that currently assigned to the

processor.

SIMULTANEOUS REQUESTS

 Let us now consider the problem of simultaneous arrivals of interrupt requests

from two or more devices. The processor must have some means of deciding which

request to service first. Using a priority scheme such as that of Figure 10.4, the solution is

straightforward. The processor simply accepts the request having the highest priority. If

126

several devices share one interrupt-request line, as in Figure 10.3, some other mechanism

is needed.

Figure 10.4: Interrupt priority schemes

Polling the status registers of the I/O devices is the simplest such mechanism. In

this case, priority is determined by the order in which the devices are polled. When

vectored interrupts are used, we must ensure that only one device is selected to send its

interrupt vector code. A widely used scheme is to connect the devices to form a daisy

chain, as shown in Figure 10.4 (a). The interrupt-request line INTR is common to all

devices. The interrupt-acknowledge line, INTA, is connected in a daisy-chain fashion,

such that the INTA signal propagates serially through the devices. When several devices

127

raise an interrupt request and the INTR line is activated, the processor responds by setting

the INTA line to 1. This signal is received by device 1. Device 1 passes the signal on to

device 2 only if it does not require any service. If device 1 has a pending request for

interrupt, it blocks the INTA signal and proceeds to put its identifying code on the data

lines. Therefore, in the daisy-chain arrangement, the device that is electrically closest to

the processor has the highest priority. The second device along the chain has second

highest priority, and so on.

The scheme in Figure 10.4(b) requires considerably fewer wires than the

individual connections in Figure 10.3. The main advantage of the scheme in Figure 10.3

is that it allows the processor to accept interrupt requests from some devices but not from

others, depending upon their priorities. The two schemes may be combined to produce

the more general structure in Figure 10.4(b). Devices are organized in groups, and each

group is connected at a different priority level. Within a group, devices are connected in a

daisy chain. This organization is used in many computer systems.

10.7 PRIORITY STRUCTURES:

Note that the general organization in Fig 10.4 (b) makes it possible for a device to

be connected to several priority levels. At any given time, the device requests an interrupt

at a priority level consistent with the urgency of the service requested. This approach

offers additional flexibility at the expense of more complex control circuitry in the device

interface.

10.8 CONTROLLING DEVICE REQUESTS:

 The control needed is usually provided in the form of an interrupt-enable bit in the

device's interface circuit. The keyboard interrupt-enable, KEN, and display interrupt-

enable, DEN, flags in register CONTROL perform this function. If either of these flags is

set, the interface circuit generates an interrupt request whenever the corresponding status

128

flag in register STATUS is set. At the same time, the interface circuit sets bit KIRQ or

DIRQ to indicate that the keyboard or display unit, respectively, is requesting an

interrupt. If an interrupt-enable bit is equal to 0, the interface circuit will not generate an

interrupt request, regardless of the state of the status flag.

To summarize, there are two independent mechanisms for controlling interrupt

requests. At the device end, an interrupt-enable bit in a control register determines

whether the device is allowed to generate an interrupt request. At the processor end,

either an interrupt enable bit in the PS register or a priority structure determines whether

a given interrupt request will be accepted.

Check your progress:

1. What is an interrupt?

2. Briefly explain the different types of interrupts.

3. How can the processor recognize the device requesting an interrupt?

4. What are the functions of controlling device requests?

10.9 SUMMARY

 The second approach for I/O operations is based on the use of interrupts; this

mechanism makes it possible to interrupt normal execution of programs in order to

service higher-priority requests that require more urgent attention. Although all

computers have a mechanism for dealing with such situations the complexity and

sophistication of interrupt-handling schemes vary from one computer to another.

10.10 KEYWORDS

Interrupt: a hardware signal

129

Vectored Interrupts

 Interrupt Nesting.

10.11 ANSWER TO CHECK YOUR PROGRESS

1. 10.2

2. 10.4 TO 10.7

3. 10.2

4. 10.8

10.12 UNIT-END EXERCISES

1. How does an interrupt occur?

2. Discuss how one enables and disables interrupts.

3. How should two or more simultaneous interrupt requests be handled?

4. Distinguish between vectored interrupts and an interrupt nesting.

5. Explain the mechanism of interrupts.

Answer: SEE

1. 10.2

2. 10.3

3. 10.6

4. 10.5 and 10.6

5. 10.2

10.13 SUGGESTED READINGS

Text Book:

130

Computer Organization – Carl Hamacher, ZvonkoVranesic, SafwatZaky, MGH

publications, Fifth Edition, 2002.

Reference Books:

Digital logic and computer design: Morris Mano, PHI, 23
rd

 Reprint, October 2000.

Ronald J Toci, Digital Systems – Principles and Applications, 5th edition, PHI, 1992.

131

UNIT - 11: DIRECT MEMEORY ACCESS

Structure

11.0 Objectives

11.1 Introduction

11.2 Exceptions

11.3 Direct Memory Access

11.4 DMA operation

11.5 Registers in DMA interface

11.6 Use of DMA controllers in a computing system

11.7 Summary

11.8 Keywords

11.9 Answers to check your progress

11.10 Unit-end exercises and answers

11.11 Suggested readings

11.0 OBJECTIVES

By studying this unit, you will be able to

 Understand exceptions.

 Explain the direct memory access as an I/O mechanism for high-speed

devices.

 How data transfer over synchronous and asynchronous buses are performed.

 Discuss the design of I/O interface circuits which Performs any format

conversion that may be necessary to transfer data between the bus and the I/O

device, such as parallel-serial conversion in the case of a serial port.

132

11.1 INTRODUCTION

 In the previous sections, we discussed about in the data transfer between the

processor and I/O devices. Data are transferred by executing instructions such as

Move DATAIN, RO

An instruction to transfer input or output data is executed only after the processor

determines that the I/O device is ready. To do this, the processor either polls a status flag

in the device interface or waits for the device to send an interrupt request. In either case,

considerable overhead is incurred, because several program instructions must be executed

for each data word transferred. In addition to polling the status register of the device,

instructions are needed for incrementing the memory address and keeping track of the

word count. When interrupts are used, there is a additional overhead associated with

saving and restoring the program counter and other state information.

To transfer large blocks of data at high speed, an alternative approach is used. A

special control unit may be provided to allow transfer of a block of data directly between

an external device and the main memory, without continuous intervention by the

processor. This approach is called Direct Memory Access (DMA).

11.2 EXCEPTIONS:

 An interrupt is an event that causes the execution of one program to be suspended

and the execution of another program to begin. So far, we have dealt only with interrupts

caused by requests received during I/O data transfers. However, the interrupt mechanism

is used in a number of other situations.

The term exception is often used to refer to any event that causes an interruption.

Hence, I/O interrupts are one example of an exception. We now describe a few other

kinds of exceptions.

133

RECOVERY FROM ERRORS:

Computers use a variety of techniques to ensure that all hardware components are

operating properly. For example, many computers include an error-checking code in the

main memory, which allows detection of errors in the stored data. If an error occurs, the

control hardware detects it and informs the processor by raising an interrupt.

The processor may also interrupt a program if it detects an error or an unusual

condition while executing the instructions of this program. For example, the OP-code

field of an instruction may not correspond to any legal instruction, or an arithmetic

instruction may attempt a division by zero.

When exception processing is initiated as a result of such errors, the processor

proceeds in exactly the same manner as in the case of an I/O interrupt request. It suspends

the program being executed and starts an exception-service routine. This routine takes

appropriate action to recover from the error, if possible, or to inform the user about it.

Recall that in the case of an I/O interrupt, the processor completes execution of the

instruction in progress before accepting the interrupt. However, when an interrupt is

caused by an error, execution of the interrupted instruction cannot usually be completed,

and the processor begins exception processing immediately.

DEBUGGING:

Another important type of exception is used as an aid in debugging programs. System

software usually includes a program called a debugger, which helps the programmer to

find errors in a program. The debugger uses exceptions to provide two important facilities

called trace and breakpoints.

 When a processor is operating in trace mode, an exception occurs after execution

of every instruction, using the debugging program as the exception-service routine. The

debugging program enables the user to examine the contents of registers, memory

locations, and so on. On return from the debugging program, the next instruction in the

program being debugged is executed, and then the debugging program is activated again.

The trace exception is disabled during the execution of the debugging program.

134

Breakpoints provide a similar facility, except that the program being debugged is

interrupted only at specific points selected by the user. An instruction called Trap or

Software-interrupt is usually provided for this purpose. Execution of this instruction

results in exactly the same actions as when a hardware interrupt request is received.

While debugging a program, the user may wish to interrupt program execution after

instruction ‘i’. The debugging routine saves instruction i + 1 and replaces it with a

software interrupt instruction. When the program is executed and reaches that point, it is

interrupted and the debugging routine is activated. This gives the user a chance to

examine memory and register contents. When the user is ready to continue executing the

program being debugged, the debugging routine restores the saved instruction that was at

location i + 1 and executes a Return-from-interrupt instruction.

PRIVILEGE EXCEPTION:

To protect the operating system of a computer from being corrupted by user programs,

certain instructions can be executed only while the processor is in the supervisor mode.

These are called privileged instructions. For example, when the processor is running in

the user mode, it will not execute an instruction that changes the priority level of the

processor or that enables a user program to access areas in the computer memory that

have been allocated to other users. An attempt to execute such an instruction will produce

a privilege exception, causing the processor to switch to the supervisor mode and begin

executing an appropriate routine in the operating system.

11.3 DIRECT MEMORY ACCESS

DMA transfers are performed by a control circuit that is part of the I/O device

interface. We refer to this circuit as a DMA controller. The DMA controller performs the

functions that would normally be carried out by the processor when accessing the main

memory. For each word transferred, it provides the memory address and all the bus

signals that control data transfer. Since it has to transfer blocks of data, the DMA

135

controller must increment the memory address for successive words and keep track of the

number of transfers.

Although a DMA controller can transfer data without intervention by the

processor, its operation must be under the control of a program executed by the

processor. To initiate the transfer of a block of words, the processor sends the starting

address, the number of words in the block, and the direction of the transfer. On receiving

this information, the DMA controller proceeds to perform the requested operation. When

the entire block has been transferred, the controller informs the processor by raising an

interrupt signal. While a DMA transfer is taking place, the program that requested the

transfer cannot continue, and the processor can be used to execute another program. After

the DMA transfer is completed, the processor can return to the program that requested the

transfer. I/O operations are always performed by the operating system of the computer in

response to a request from an application program. The OS is also responsible for

suspending the execution of one program and starting another. Thus, for an I/O operation

involving DMA, the OS puts the program that requested the transfer in the Blocked state,

initiates the DMA operation, and starts the execution of another program. When the

transfer is completed, the DMA controller informs the processor by sending an interrupt

request. In response, the OS puts the suspended program in the Runnable state so that it

can be selected by the scheduler to continue execution.

Figure 11.1: Registers in a DMA interface

Figure 11.1 shows an example of the DMA controller registers that are accessed

by the processor to initiate transfer operations. Two registers are used for storing the

136

starting address and the word count. The third register contains status and control flags.

The R/W bit determines the direction of the transfer. When this bit is set to 1 by a

program instruction, the controller performs a read operation, that is, it transfers data

from the memory to the I/O device. Otherwise, it performs a write operation. When the

controller has completed transferring a block of data and is ready to receive another

command, it sets the done flag to 1. Bit 30 is the Interrupt-enable flag, IE. When this flag

is set to 1, it causes the controller to raise an interrupt after it has completed transferring a

block of data. Finally, the controller sets the IRQ bit to 1 when it has requested an

interrupt. .

11.4 DMA OPERATION

Direct memory access (DMA) is a feature of modern computers that allows

certain hardware subsystems within the computer to access

system memory independently of the central processing unit (CPU).

Without DMA, when the CPU is using programmed input/output, it is typically

fully occupied for the entire duration of the Read or Write operation, and is thus

unavailable to perform other work. With DMA, the CPU initiates the transfer, does other

operations while the transfer is in progress, and receives an interrupt from the DMA

controller when the operation is done. This feature is useful any time the CPU cannot

keep up with the rate of data transfer, or where the CPU needs to perform useful work

while waiting for a relatively slow I/O data transfer. Many hardware systems use DMA,

including disk drive controllers, graphics cards, network cards and sound cards. DMA is

also used for intra-chip data transfer in multi-core processors. Computers that have DMA

channels can transfer data to and from devices with much less CPU overhead than

computers without a DMA channel. Similarly, a processing element inside a multi-core

processor can transfer data to and from its local memory without occupying its processor

time, allowing computation and data transfer to proceed in parallel.

137

DMA can also be used for "memory to memory" copying or moving of data

within memory. DMA can offload expensive memory operations, such as large copies

or scatter-gather operations, from the CPU to a dedicated DMA engine. An

implementation example is the I/O Acceleration Technology.

Advantages of DMA

 Computer system performance is improved by direct transfer of data between

memory and I/O devices, bypassing the CPU.

 CPU is free to perform operations that do not use system buses.

Disadvantages of DMA

 In case of Burst Mode data transfer, the CPU is rendered inactive for relatively long

periods of time.

11.5 REGISTERS IN A DMA INTERFACE

The DMA controller includes three registers: an address register, a byte count

register, and a control register.

 The address register contains 16 bits that specify the desired location

in memory. The address bits go through a bus buffer into the address

bus. The address register is incremented after each DMA byte transfer.

 The byte count register holds the number of bytes to be transferred.

This register is decremented after each byte transfer and internally

tested for zero.

 The control register specifies the mode of transfer-whether it is into

(write) or out of (read) memory.

 All registers in DMA appear to the microprocessor as an I/O interface.

Thus, the processor can read from or write into the DMA registers under program control

via the data bus.

138

11.6 USE OF DMA CONTROLLERS IN A COMPUTING SYSTEM

DMA transfer is very useful in many microcomputer system applications. It is

useful for fast transfer of information between magnetic tape cassettes and system RAM.

It is also useful for communication with interactive terminal systems having CRT screens

or with television screens used for video games. Typically, an image of the screen display

is kept in a memory which can be updated under processor control. The contents of the

memory can be transferred to the screen periodically by means of DMA transfer.

The potential application of DMA is in a multiprocessor system forming a

network of two or more processors. Communication between processors can be

maintained with a shared memory that can be accessed by all processors. DMA is a

convenient method for transferring information between the common memory and the

various processors in the network.

Check your progress:

1. Explain the term exception.

2. What is Direct Memory Access?

3. Explain the functions of debugging process.

11.7 SUMMARY

In this unit we briefly explained exceptions. We also discussed the third I/O

scheme which involves direct memory access; the DMA controller that transfers data

between an I/O device and the main memory without continuous processor intervention.

Access to memory is shared between the DMA controller and the processor.

139

11.8 KEYWORDS

Exceptions

DMA

DMA Controller

Interface Circuits

11.9 ANSWER TO CHECK YOUR PROGRESS

1. 11.2

2. 11.3

3. 11.2

11.10 UNIT-END EXERCISES AND ANSWERS

1. How does the system recover from errors?

2. Explain the functions of DMA interface.

3. What is Synchronous Bus? Explain.

4. Explain DMA operations.

Answer : SEE

1. 11.2

2. 11.3

3. 11.3

4. 11.4

140

11.11 SIGGESTED READINGS

Text Book:

Computer Organization – Carl Hamacher, ZvonkoVranesic, SafwatZaky, MGH

publications, Fifth Edition, 2002.

Reference Books:

Digital logic and computer design: Morris Mano, PHI, 23
rd

 Reprint, October 2000.

Ronald J Toci, Digital Systems – Principles and Applications, 5th edition, PHI. 1992

141

UNIT–12: I/O HARDWARE AND STANDARD I/O INTERFACES

Structure

12.0 Objectives

12.1 Introduction

12.2 I/O Hardware

12.3 Details of I/O Interface

12.4 Functions of I/O interface

12.5 Standard I/O interfaces

12.5.1 PCI Bus

12.5.2 SCSI Bus1

12.6 Summary

12.7 Keywords

12.8 Answers to check your progress

12.9 Unit-end exercises and answers

12.10 Suggested readings

12.0 OBJECTIVES

 After studying this unit, you will get a good picture:

 I/O hardware

 Commercial bus standards, in particular the PCI, SCSI buses.

12.1 INTRODUCTION

The previous sections point out that there are several alternative designs for the

bus of a computer. This variety means that I/O devices fitted with an interface circuit

suitable for one computer may not be usable with other computers. A different interface

may have to be designed for every combination of I/O device and computer, resulting in

142

many different interfaces. The most practical solution is to develop standard interface

signals and protocols.

It is helpful at this point to understand how a computer system is put together. A

typical personal computer, for example, includes a printed circuit board called the

motherboard. This board houses the processor chip, the main memory, and some I/O

interfaces. It also has a few connectors into which additional interfaces can be plugged.

12.2 I/O HARDWARE

 The processor, main memory, and I/O devices can be interconnected by means of

a common bus whose primary function is to provide a communications path for the

transfer of data. The bus includes the lines needed to support interrupts and arbitration. In

this section, we discuss the main features of the bus protocols used for transferring data.

A bus protocol is the set of rules that govern the behavior of various devices connected to

the bus as to when to place information on the bus, assert control signals, and so on. After

describing bus protocols, we will present examples of interface circuits that use these

protocols.

The bus lines used for transferring data may be grouped into three types: data,

address, and control lines. The control signals specify whether a read or a write operation

is to be performed. Usually, a single R/W line is used. It specifies Read when set to 1 and

Write when set to O. When several operand sizes are possible, such as byte, word, or long

word, the required size of data is indicated.

The bus control signals also carry timing information. They specify the times at

which the processor and the I/O devices may place data on the bus or receive data from

the bus. A variety of schemes have been devised for the timing of data transfers over a

bus. These can be broadly classified as either synchronous or asynchronous schemes.

 SYNCHORONOUS BUS

 In a synchronous bus, all devices derive timing information from a common clock

line. Equally spaced pulses on this line define equal time intervals. In the simplest form

of a synchronous bus, each of these intervals constitutes a bus cycle during which one

143

data transfer can take place. Such a scheme is illustrated in Figure 12.1 . The address and

data lines in this and subsequent figures are shown as high and low at the same time. This

is a common convention indicating that some lines are high and some low, depending on

the particular address or data pattern being transmitted. The crossing points indicate the

times at which these patterns change. A signal line in an indeterminate or high impedance

state is represented by an intermediate level half-way between the low and high signal

levels.

Let us consider the sequence of events during an input (read) operation. At time

to, the master places the device address on the address lines and sends an appropriate

command on the control lines. In this case, the command will indicate an input operation

and specify the length of the operand to be read, if necessary. Information travels over the

bus at a speed determined by its physical and electrical characteristics. The clock pulse

width, tl - to, must be longer than the maximum propagation delay between two devices

connected to the bus. It also has to be long enough to allow all devices to decode the

address and control signals so that the addressed device (the slave) can respond at time t1.

It is important that slaves take no action or place any data on the bus before tl. The

information on the bus is unreliable during the period of to- t1, because signals are in

changing state. The addressed slave places the requested input data on the data lines at

time t1.

Figure 12.1: Timing of an input transfer on a synchronous bus

144

At the end of the clock cycle, at time t2, the master strobes the data on the data

lines into its input buffer. In this context, "strobe" means to capture the values of the data

at a given instant and store them into a buffer. For data to be loaded correctly into any

storage device, such as a register built with flip-flops, the data must be available at the

input of that device for a period greater than the setup time of the device. Hence, the

period t2 - tl must be greater than the maximum propagation time on the bus plus the

setup time of the input buffer register of the master.

A similar procedure is followed for an output operation. The master places the

output data on the data lines when it transmits the address and command information. At

time t2, the addressed device strobes the data lines and loads the data into its data buffer.

The timing diagram in Figure 12.1 is an idealized representation of the actions

that take place on the bus lines. The exact times at which signals actually change state are

somewhat different from those shown because of propagation delays on bus wires and in

the circuits of the devices.

MULTIPLE-CYCLE TRANSFERS:

The processor has no way of determining whether the addressed device as

actually responded. It simply assumes that, at t2, the output data have been received by

the I/O device or the input data are available on the data lines. If, because of a

malfunction, the device does not respond, the error will not be detected.

To overcome these limitations, most buses incorporate control signals that

represent a response from the device. These signals inform the master that the slave has

recognized its address and that it is ready to participate in a data-transfer operation. They

also make it possible to adjust the duration of the data-transfer period to suit the needs of

the participating devices. To simplify this process, a high-frequency clock signal is used

such that a complete data transfer cycle would span several clock cycles. Then, the

number of clock cycles involved can vary from one device to another.

An example of this approach is shown in Figure 12.2. During clock cycle 1, the

master sends address and command information on the bus, requesting a read operation.

The slave receives this information and decodes it. On the following active edge of the

145

clock, that is, at the beginning of clock cycle 2, it makes a decision to respond and begins

to access the requested data. We have assumed that some delay is involved in getting the

data, and hence the slave cannot respond immediately. The data become ready and are

placed on the bus in clock cycle 3. At the same time, the slave asserts a control signal

called Slave-ready. The master, which has been waiting for this signal, strobes the data

into its input buffer at the end of clock cycle 3. The bus transfer operation is now

complete, and the master may send a new address to start a new transfer in clock cycle 4.

The Slave-ready signal is an acknowledgment from the slave to the master,

confirming that valid data have been sent. In the example in Figure 12.1, the slave

responds in cycle 3. Another device may respond sooner or later. The Slave-ready signal

allows the duration of a bus transfer to change from one device to another. If the

addressed device does not respond at all, the master waits for some predefined maximum

number of clock cycles, and then aborts the operation. This could be the result of an

incorrect address or a device malfunction.

Figure 12.2: An input transfer using multiple clock cycles

146

ASYCHRONOUS BUS

 An alternative scheme for controlling data transfers on the bus is based on the use

of handshake between the master and the slave. The concept of a handshake is a

generalization of the idea of the Slave-ready signal in Figure 12.2. The common clock is

replaced by two timing control lines, Master-ready and Slave-ready. The first is asserted

by the master to indicate that it is ready for a transaction, and the second is a response

from the slave.

In principle, a data transfer controlled by a handshake protocol proceeds as

follows. The master places the address and command information on the bus. Then it

indicates to all devices that it has done so by activating the Master-ready line. This causes

all devices on the bus to decode the address. The selected slave performs the required

operation and informs the processor it has done so by activating the Slave-ready line. The

master waits for Slave-ready to become asserted before it removes its signals from the

bus. In the case of a read operation, it also strobes the data into its input buffer.

I/O devices can be roughly categorized as storage, communications, user-interface, and

other devices communicate with the computer via signals sent over wires or through the

air. Devices connect with the computer via ports, e.g. a serial or parallel port. A common

set of wires connecting multiple devices is termed a bus. Buses include rigid protocols

for the types of messages that can be sent across the bus and the procedures for resolving

contention issues.

The PCI bus connects high-speed high-bandwidth devices to the memory subsystem (and

the CPU). The expansion bus connects slower low-bandwidth devices, which typically

deliver data one character at a time (with buffering). The SCSI bus connects a number of

SCSI devices to a common SCSI controller.

12.3 DETAILS OF I/O INTERFACE

 An I/O interface is required whenever the I/O device is driven by the processor.

The interface must have necessary logic to interpret the device address generated by the

processor. The processor can communicate with an I/O device through the interface.

147

12.4 FUNCTIONS OF I/O INTERFACE

The following are the functions of I/O interface:

 I/O interface provides a storage buffer for one word of data.

 I/O interface contains status flag that can be accessed by the processor

to determine whether the buffer is full or empty.

 I/O interface contains address-decoding circuitry to determine when it

is being addressed by the processor.

 I/O interface enerates the appropriate timing signals required by the

bus control scheme used

 I/O interface performs any format conversion that may be necessary to

transfer data between the bus and the I/O device.

12.5 STANDARD I/O INTERFACES

The processor bus is the bus defined by the signals on the processor chip itself.

Devices that require a very high speed connection to the processor, such as the main

memory, may be connected directly to this bus. For electrical reasons, only a few devices

can be connected in this manner. The motherboard usually provides another bus that can

support more devices. The two buses are interconnected by a circuit, which we will call a

bridge that translates the signals and protocols of one bus into those of the other. Devices

connected to the expansion bus appear to the processor as if they were connected directly

to the processor's own bus. The only difference is that the bridge circuit introduces a

small delay in data transfers between the processor and those devices.

It is not possible to define a uniform standard for the processor bus. The structure

of this bus is closely tied to the architecture of the processor. It is also dependent on the

electrical characteristics of the processor chip, such as its clock speed. The expansion bus

is not subject to these limitations, and therefore it can use a standardized signaling

scheme. A number of standards have been developed. Some have evolved by default,

148

when a particular design became commercially successful. For example, IBM developed

a standard called ISA (Industry Standard Architecture) for their personal computer

known at the time as PC AT. The popularity of that computer led to other manufacturers

producing ISA -compatible interfaces for their 110 devices, thus making ISA into a de

facto standard.

Some standards have been developed through industrial cooperative efforts, even

among competing companies driven by their common self-interest in having compatible

products. In some cases, organizations such as the IEEE (Institute of Electrical and

Electronics Engineers), ANSI (American Nationa1 Standards Institute), or international

bodies such as ISO (International Standards Organization) have blessed these standards

and given them an official status.

Figure 12.3: An example of a computer system using different interface standards

In this section, we present three widely used bus standards, PCI (Peripheral

Component Interconnect), SCSI (Small Computer System Interface), and USB (Universal

Serial Bus). The way these standards are used in a typical computer system is illustrated

149

in Figure 12.3. The PCI standard defines an expansion bus on the motherboard, SCSI and

USB are used for connecting additional devices, both inside and outside the computer

box. The SCSI bus is a high-speed parallel bus intended for devices such as disks and

video displays. The USB bus uses serial transmission to suit the needs of equipment

ranging from keyboards to game controls to internet connections. The figure shows an

interface circuit that enables devices compatible with the earlier ISA standard, such as the

popular IDE (Integrated Device Electronics) disk, to be connected. It also shows a

connection to an Ethernet. The Ethernet is a widely used local area network, providing a

high-speed connection among computers in a building or a university campus.

A given computer may use more than one bus standard. A typical Pentium

computer has both a PCI bus and an ISA bus, thus providing the user with a wide range

of devices to choose from.

12.5.1 PCI BUS

 The PCI follows a sequence of bus standards that were used primarily in IBM

PCs. Early PCs used the 8-bit XT bus, whose signals closely mimicked those of Intel's

80x86 processors. Later, the 16-bit bus used on the PC AT computers became known as

the ISA bus. Its extended 32-bit version is known as the ISA bus. Other buses developed

in the eighties with similar capabilities are the Micro channel used in IBM PCs and the

NuBus used in Macintosh computers.

The PCI was developed as a low-cost bus that is truly processor independent. Its

design anticipated a rapidly growing demand for bus bandwidth to support high-speed

disks and graphic and video devices, as well as the specialized needs of multiprocessor

systems. As a result, the PCI is still popular as an industry standard almost a decade after

it was first introduced in 1992.

An important feature that the PCI pioneered is a plug-and-play capability for

connecting I/O devices. To connect a new device, the user simply connects the device

interface board to the bus.

150

Data Transfer

 In today's computers, most memory transfers involve a burst of data rather than

just one word. The reason is that modern processors include a cache memory. Data are

transferred between the cache and the main memory in bursts of several words each. The

words involved in such a transfer are stored at successive memory locations. When the

processor (actually the cache controller) specifies an address and requests a read

operation from the main memory, the memory responds by sending a sequence of data

words starting at that address. Similarly, during a write operation, the processor sends a

memory address followed by a sequence of data words, to be written in successive

memory locations starting at that address. The PCI is designed primarily to support this

mode of operation. A read or a write operation involving a single word is simply treated

as a burst of length one.

The bus supports three independent address spaces: memory, I/O, and

configuration. The first two are self-explanatory. The I/O address space is intended for

use with processors, such as Pentium, that have a separate I/O address space. However,

the system designer may choose to use memory-mapped I/O even when a separate I/O

address space is available. In fact, this is the approach recommended by the PCI standard

for wider compatibility. The configuration space is intended to give the PCI its plug-and-

play capability. A 4-bit command that accompanies the address identifies which of the

three spaces is being used in a given data transfer operation.

Figure 12.3 shows the main memory of the computer connected directly to the

processor bus. An alternative arrangement that is used often with the PCI bus is shown in

Figure 12.4. The PCI Bridge provides a separate physical connection for the main

memory. For electrical reasons, the bus may be further divided into segments connected

via bridges. However, regardless of which bus segment a device is connected to, it may

still be mapped into the processor's memory address space.

151

Figure 12.4: Use of a PCI bus in a computer system

Device Configuration

 When an I/O device is connected to a computer, several actions are needed to

configure both the device and the software that communicates with it. A typical device

interface card for an ISA bus, for example, has a number of jumpers or switches that have

to be set by the user to select certain options. Once the device is connected, the software

needs to know the address of the device. It may also need to know relevant device

characteristics, such as the speed of the transmission link, whether parity bits are used,

and so on.

The PCI simplifies this process by incorporating in each I/O device interface a

small configuration ROM memory that stores information about that device. The

configuration ROMs of all devices are accessible in the configuration address space. The

PCI initialization software reads these ROMs whenever the system is powered up or

reset. In each case, it determines whether the device is a printer, a keyboard, an Ethernet

interface, or a disk controller. It can further learn about various device options and

characteristics.

152

12.5.2 SCSI BUS:

 The acronym SCSI stands for Small Computer System Interface. It refers to a

standard bus defined by the American National Standards Institute (ANSI) under the

designation X3.131. In the original specifications of the standard, devices such as disks

are connected to a computer via a 50-wire cable, which can be up to 25 meters in length

and can transfer data at rates up to 5 megabytes/s.

 The SCSI bus standard has undergone many revisions, and its data transfer

capability has increased very rapidly, almost doubling every two years. SCSI-2 and

SCSI-3 have been defined, and each has several options. A SCSI bus may have eight data

lines, in which case it is called a narrow bus and transfers data one byte at a time.

Alternatively, a wide SCSI bus has 16 data lines and transfers data 16 bits at a time.

There are also several options for the electrical signaling scheme used. The bus may use

single-ended transmission (SE), where each signal uses one wire, with a common ground

return for all signals. In another option, differential signaling is used, where a separate

return wire is provided for each signal. In this case, two voltage levels are possible.

Earlier versions use 5 V (TTL levels) and are known as High Voltage Differential

(HVD). More recently, a 3.3 V version has been introduced and is known as Low Voltage

Differential (LVD).

Because of these various options, the SCSI connector may have 50, 68, or 80 pins.

The maximum transfer rate in commercial devices that are currently available varies from

5 megabytes/s to 160 megabytes/s. The most recent version of the standard is intended to

support transfer rates up to 320 megabytes/s, and 640 megabytes/s is anticipated a little

later. The maximum transfer rate on a given bus is often a function of the length of the

cable and the number of devices connected, with higher rates for a shorter cable and

fewer devices. To achieve the top data transfer rate, the bus length is typically limited to

1.6 m for SE signaling and 12 m for LVD signaling. However, manufacturers often

provide special bus expanders to connect devices that are farther away. The maximum

capacity of the bus is 8 devices for a narrow bus and 16 devices for a wide bus. Devices

connected to the SCSI bus are not part of the address space of the processor in the same

153

way as devices connected to the processor bus. The SCSI bus is connected to the

processor bus through a SCSI controller, as shown in Figure 12.3. This controller uses

DMA to transfer data packets from the main memory to the device, or vice versa. A

packet may contain a block of data, commands from the processor to the device, or status

information about the device.

To illustrate the operation of the SCSI bus, let us consider how it may be used

with a disk drive. Communication with a disk drive differs substantially from

communication with the main memory. Data are stored on a disk in blocks called sectors,

where each sector may contain several hundred bytes. These data may not necessarily be

stored in contiguous sectors. Some sectors may already contain previously stored data;

others may be defective and must be skipped. Hence, a read or write request may result in

accessing several disk sectors that are not necessarily contiguous. Because of the

constraints of the mechanical motion of the disk, there is a long delay, in the order of

several milliseconds, before reaching the first sector to or from which data are to be

transferred. Then, a burst of data is transferred at high speed. Another delay may ensue,

followed by a burst of data. A single read or write request may involve several such

bursts. The SCSI protocol is designed to facilitate this mode of operation.

A controller connected to a SCSI bus is one of two types - an initiator or a target.

An initiator has the ability to select a particular target and to send commands specifying

the operations to be performed. Clearly, the controller on the processor side must be able

to operate as an initiator. The disk controller operates as a target. It carries out the

commands it receives from the initiator. The initiator establishes a logical connection

with the intended target.

Once this connection has been established, it can be suspended and restored as

needed to transfer commands and bursts of data. While a particular connection is

suspended, other devices can use the bus to transfer information. This ability to overlap

data transfer requests is one of the key features of the SCSI bus that leads to its high

performance.

Data transfers on the SCSI bus are always controlled by the target controller. To

send a command to a target, an initiator requests control of the bus and after winning

arbitration, selects the controller it wants to communicate with and hands control of the

154

bus over to it. Then the controller starts a data transfer operation to receive a command

from the initiator.

Let us examine a complete disk read operation as an example. In this discussion,

even though we refer to the initiator controller as taking certain actions, it should be clear

that it performs these actions after receiving appropriate commands from the processor.

Assume that the processor wishes to read a block of data from a disk drive and that these

data are stored in two disk sectors that are not contiguous. The processor sends a

command to the SCSI controller, which causes the following sequence of events to take

place:

 The SCSI controller, acting as an initiator, contends for control of the bus.

 When the 'initiator wins the arbitration process, it selects the target controller and

hands over control of the bus to it.

 The target starts an output operation (from initiator to target); in response to this,

the initiator sends a command specifying the required read operation.

 The target, realizing that it first needs to perform a disk seek operation, sends a

message to the initiator indicating that it will temporarily suspend the connection

between them. Then it releases the bus.

 The target controller sends a command to the disk drive to move the read head to

the first sector involved in the requested read operation. Then, it reads the data

stored in that sector and stores them in a data buffer. When it is ready to begin

transferring data to the initiator, the target requests control of the bus. After it

wins arbitration, it reselects the initiator controller, thus restoring the suspended

connection.

 The target transfers the contents of the data buffer to the initiator and then

suspends the connection again. Data are transferred either 8 or 16 bits in parallel,

depending on the width of the bus.

 The target controller sends a command to the disk drive to perform another seek

operation. Then, it transfers the contents of the second disk sector to the initiator,

as before. At the end of this transfer, the logical connection between the two

controllers is terminated.

155

 As the initiator controller receives the data, it stores them into the main memory

using the DMA approach.

 The SCSI controller sends an interrupt to the processor to inform it that the

requested operation has been completed.

This scenario shows that the messages exchanged over the SCSI bus are at a

higher level than those exchanged over the processor bus. In this context, a "higher level"

means that the messages refer to operations that may require several steps to complete,

depending on the device. Neither the processor nor the SCSI controller need be aware of

the details of operation of the particular device involved in a data transfer. In the

preceding example, the processor need not be involved in the disk seek operations.

The SCSI bus standard defines a wide range of control messages that can be

exchanged between the controllers to handle different types of I/O devices. Messages are

also defined to deal with various error or failure conditions that might arise during device

operation or data transfer.

Bus Signal

We now describe the operation of the SCSI bus from the hardware point of view.

The bus signals are summarized in Table 12.1. For simplicity we show the signals for a

narrow bus (8 data lines). Note that all signal names are preceded by a minus sign. This

indicates that the signals are active, or that a data line is equal to 1, when they are in the

low-voltage state. The bus has no address lines. Instead, the data lines are used to identify

the bus controllers involved during the selection or reselection process and during bus

arbitration. For a narrow bus, there are eight possible controllers, numbered o through 7,

and each i, associated with the data line that has the same number. A wide bus

accommodates up to 16 controllers. A controller places its own address or the address of

another controller on the bus by activating the corresponding data line. Thus, it is

possible to have more than one address on the bus at the same time, as in the arbitration

process we describe next. Once a connection is established between two controllers, there

is no further need for addressing, and the data lines are used to carry data.

156

Table 12.1: The SCSI bus signals

157

Check your progress:

1. Expand i) PCI Bus ii) SCSI Bus

2. How is data transfer performed in PCI Bus?

3. What is a bridge?

12.6 SUMMARY

In this unit, we discussed about I/O hardware. We also explained the popular

interconnection standards are described namely the PCI, SCSI. They represent different

approaches that meet the needs of various devices and reflect the increasing importance

of plug-and-play features which increase user convenience.

12.7 KEYWORDS

I / O Interfaces,

PCI Bus

SCSI Bus

Answers to check your progress

12.8 ANSWER TO CHECK YOUR PROGRESS

1. 12.5

2. 12.5.1

3. 12.5

158

12.9 UNIT-END EXERCISES AND ANSWERS

1. Discuss the Bus signal of SCSI with a neat diagram.

2. Explain in detail about the I/O hardware and I/O interface.

Answer: SEE

1. 12.5.2

2. 12.4 and 12.5

12.10 SUGGESTED READINGS

Text Book:

Computer Organization – Carl Hamacher, ZvonkoVranesic, SafwatZaky, MGH

publications, Fifth Edition, 2002.

Reference Books:

Digital logic and computer design: Morris Mano, PHI, 23
rd

 Reprint, October 2000.

Ronald J Toci, Digital Systems – Principles and Applications, 5th edition, PHI. 1992

159

UNIT – 13: BASIC CONCEPTS

Structure

13.0 Objectives

13.1 Introduction

13.2 Some Concepts

13.3 Memory Addressing

13.4 CPU – Main memory connection

13.5 Memory Access Type

13.6 Memory Access Cycle

13.7 Random Access Memory

13.8 Cache Memory

13.9 Virtual Memory

13.10 Summary

13.11 Keywords

13.12 Answers to check your progress

13.13 Unit-end exercises and answers

13.14 Suggested readings

13.0 OBJECTIVES

After studying this module, you will be able to

 Discuss the organization of semiconductor memories

 Explain the various memory addressing schemes

 Discuss the connection between memory and CPU, the processor

 Explain the different types of memories

160

13.1 INTRODUCTION

 A Memory is a collection of storage cells together with associated circuits needed

to transfer information in and out of storage. Programs and data they operate on are held

in the main memory of the computer during execution. So here we discuss how this vital

part of the computer operates.

A random access memory (RAM) differs from a read only memory (ROM) in that a

RAM can transfer the stored information out (read) and is also capable of receiving new

information in for storage (write).

13.2 SOME CONCEPTS

 The maximum size of the memory that can be used in any computer is determined

by the addressing scheme.

Address Memory Locations

16 Bit

32 Bit

40 Bit

2
16

 = 64 K

2
32

 = 4G (Giga)

2
40

 = IT (Tera)

Up to 2k addressable
MDR

MAR

k-bit
address bus

n-bit
data bus

Control lines

(, MFC, etc.)

Processor Memory

locations

Word length =n bits

WR /

Figure 13.1: Connection of Memory to Processor

161

If MAR is k bits long and MDR is n bits long, then the memory may contain upto2
K

addressable locations and the n-bits of data are transferred between the memory and

processor. This transfer takes place over the processor bus.

The processor bus has,

 Address Line

 Data Line

 Control Line (R/W, MFC – Memory Function Completed)

The control line is used for coordinating data transfer. The processor reads the data from

the memory by loading the address of the required memory location into MAR and

setting the R/W line to 1. The memory responds by placing the data from the addressed

location onto the data lines and confirms this action by asserting MFC signal.

Upon receipt of MFC signal, the processor loads the data onto the data lines into MDR

register. The processor writes the data into the memory location by loading the address of

this location into MAR and loading the data into MDR sets the R/W line to 0.

Memory Access Time →It is the time that elapses between the initiation of an

operation and the completion of that operation.

Memory Cycle Time → It is the minimum time delay that is required between the

initiations of the two successive memory operations.

13.3 MEMORY ADDRESSING

 Let us consider the logical structure of a computer’s random access memory (RAM).

The generic term for the smallest unit of memory that the CPU can read or write is cell.

In most modern computers, the size of a cell is 8 bits (1 byte). Hardware accessible units

of memory larger than one cell are called words. Currently (1998) the most common

word sizes are 32 bits (4 bytes) and 64 bits (8 bytes). Every memory cell has a unique

integer address. The CPU accesses a cell by giving its address. Addresses of logically

162

adjacent cells differ by 1, the address space of a processor is the range of possible integer

addresses, typically (0: 2
n

− 1)

Figure 13.3: memory address

13.4 CPU MAIN-MEMORY CONNECTION

This topic will look at how data is transferred between the CPU and computer

memory. We will do this by first looking at the technical detail of how bits are read and

written between registers in the CPU and main memory. Once these details are

understood we then look at actual instructions for loading and storing data in memory.

163

This is done by examining the SPASM instructions set. Data is transferred between

registers in the CPU and memory cells. In this topic we will look at the different registers

that are implemented in most CPUs. We will see that these are made up of registers that

are accessible to the program and registers that control the operation of the CPU but are

not directly accessible. Some of these registers are closely connected to the computer's

internal buses and are used to read the buses and to change the status of the buses. We

will also see how memory interprets the buses to read and write to memory cells.

After studying the details of data transfer we will examine an instruction set to see the

effect of different interpretations of the data in the CPU. To do this we will learn about

the SPASM computer and assembler language. SPASM is not a real computer. It is a

simplified simulated computer designed as a learning tool. It takes instructions and ideas

from several real computer systems. In this topic we only examine the instructions for

accessing memory.

Accessing memory from the CPU

Before we look at how the CPU accesses memory we must expand our view of

microcomputer architecture. We will first look at buses and then look at some of the

registers internal to the CPU. We will then examine in more detail the interaction

between the CPU and memory.

Buses

The buses that connect the three main parts of a computer system are called the control

bus, the data bus and the address bus.

1. Control bus →is used to pass signals (0 and 1 bits) between the three

components. For example, if the CPU wishes to read the contents of memory

rather than write to memory it signals this on the control bus.

2. Address bus→ is used to address memory or I/O modules. Memory addresses or

I/O module port addresses are placed on this bus.

164

3. Data bus→ is used to transfer data. After the control bus signals a read or write

operation and the address is placed on the address bus the computer component

concerned places the data on the data bus so the destination can read it

Figure 13.2: The computer’s buses

As an example of the use of these buses, we can list the steps involved in the CPU

reading data from an address in memory. These steps are:

 The CPU places the memory address on the address bus

 The CPU requests a memory read operation on the control bus

 The memory recognizes the memory read operation and examines the address

on the address bus

 Memory moves the data from cells at the address on the address bus to the

data bus

 The CPU reads the data off the data bus.

13.5 MEMORY ACCESS TYPE

There are two types of memory access.

 Uniform Memory Access (UMA)

 Non-Uniform Memory Access (NUMA)

Uniform Memory Access (UMA) is a shared memory architecture used in parallel

computers.

165

All the processors in the UMA model share the physical memory uniformly. In UMA

architecture, access time to a memory location is independent of which processor makes

the request or which memory chip contains the transferred data.

Uniform Memory Access computer architectures are often contrasted with Non-Uniform

Memory Access (NUMA) architectures.

In the UMA architecture, each processor may use a private cache. Peripherals are also

shared in some fashion; The UMA model is suitable for general purpose and time sharing

applications by multiple users. It can be used to speed up the execution of a single large

program in time critical applications.

Non-Uniform Memory Access (NUMA) is a computer memory design used

in multiprocessing, where the memory access time depends on the memory location

relative to a processor. Under NUMA, a processor can access its own local memory faster

than non-local memory (memory local to another processor or memory shared between

processors).

NUMA architectures logically follow in scaling from symmetric multiprocessing (SMP)

architectures. They were developed commercially during the 1990s

by Burroughs (later Unisys), Convex Computer (later Hewlett-

Packard), Honeywell Information Systems Italy (HISI) (later Group Bull), Silicon

Graphics (later Silicon Graphics International), Sequent Computer Systems (later IBM),

Data General (later EMC), and Digital (later Compaq, now HP). Techniques developed

by these companies later featured in a variety of Unix like operating systems, and to an

extent in Windows NT.

The first commercial implementation of a NUMA-based UNIX system was the

Symmetrical Multi Processing XPS-100 family of servers, designed by Dan Gielan of

VAST Corporation for Honeywell Information Systems Italy. The tremendous success of

the architecture made HISI the top UNIX vendor in Europe.

166

13.6 MEMORY CYCLE TIME

 Memory access time is how long it takes for a character in memory to be

transferred to or from the CPU. In a PC or Mac, fast RAM chips have an access time of

70 nanoseconds (ns) or less. SDRAM chips have a burst mode that obtains the second

and subsequent characters in 10 ns

or less. Disk access time is an average of the time between initiating a request and

obtaining the first data character. It includes the command processing, the average seek

time (moving the read/write head to the required track) and the average latency (rotation

of disk to the required sector). This specification must be given as an average, because

seek times and latency can vary depending on the current position of the head and platter.

Fast hard disks have access times of 10 milliseconds (ms) or less. This is a common

speed measurement, but overall disk performance is significantly influenced by channel

speed (transfer rate), interleaving and caching.

13.7 Random Access Memory (RAM)

 In RAM, if any location that can be accessed for a Read/Write operation in fixed

amount of time, it is independent of the locations address. RAM is a form of computer

data storage. A random access device allows stored data to be accessed in very nearly the

same amount of time for any storage location, so data can be accessed quickly in any

random order. In contrast, other data storage media such as shared

disks, CDs, DVDs and magnetic tape read and write data only in a predetermined order,

consecutively, because of mechanical design limitations. Therefore the time to access a

given data location varies significantly depending on its physical location.

Today, random access memory takes the form of integrated circuits. Strictly speaking,

modern types of DRAM are not random access, as data is read in bursts, although the

name DRAM / RAM has stuck. However, many types of SRAM, ROM, OTP, and NOR

flash are still random access even in a strict sense. RAM is often associated

with volatile types of memory (such as DRAM memory modules), where its stored

information is lost if the power is removed. Many other types of non-volatile memory are

http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Hard_disk
http://en.wikipedia.org/wiki/Hard_disk
http://en.wikipedia.org/wiki/Compact_Disc
http://en.wikipedia.org/wiki/DVD
http://en.wikipedia.org/wiki/Magnetic_tape
http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/DRAM
http://en.wikipedia.org/wiki/DRAM
http://en.wikipedia.org/wiki/Static_random-access_memory
http://en.wikipedia.org/wiki/Read-only_memory
http://en.wikipedia.org/wiki/Programmable_read-only_memory
http://en.wikipedia.org/wiki/NOR_flash
http://en.wikipedia.org/wiki/NOR_flash
http://en.wikipedia.org/wiki/Random_access
http://en.wikipedia.org/wiki/Volatile_memory
http://en.wikipedia.org/wiki/DRAM
http://en.wikipedia.org/wiki/DIMM

167

RAM as well, including most types of ROM and a type of flash memory called NOR-

Flash. The first RAM modules to come into the market were created in 1951 and were

sold until the late 1960s and early 1970s.

Types of RAM

 The two main forms of modern RAM are static RAM (SRAM) and dynamic

RAM (DRAM). In static RAM, a bit of data is stored using the state of a flip-flop. This

form of RAM is more expensive to produce, but is generally faster and requires less

power than DRAM and, in modern computers, is often used as cache memory for

the CPU. DRAM stores a bit of data using a transistor and capacitor pair, which together

comprise a memory cell. The capacitor holds a high or low charge (1 or 0, respectively),

and the transistor acts as a switch that lets the control circuitry on the chip read the

capacitor's state of charge or change it. As this form of memory is less expensive to

produce than static RAM, it is the predominant form of computer memory used in

modern computers.

Both static and dynamic RAM’s are considered volatile, as their state is lost or reset when

power is removed from the system. By contrast, Read only memory (ROM) stores data

by permanently enabling or disabling selected transistors, such that the memory cannot

be altered. Writeable variants of ROM (such as EEPROM and flash memory) share

properties of both ROM and RAM, enabling data to persist without power and to be

updated without requiring special equipment. These persistent forms of semiconductor

ROM include USB flash drives, memory cards for cameras and portable devices, etc. As

of 2007, NAND flash has begun to replace older forms of persistent storage, such

as magnetic disks and tapes, while NOR flash is being used in place of ROM in net-

books and rugged computers, since it is capable of true random access, allowing direct

code execution.

ECC memory (which can be either SRAM or DRAM) includes special circuitry to detect

and/or correct random faults (memory errors) in the stored data, using parity bits or error

correction code.

In general, the term RAM refers solely to solid state memory devices (either DRAM or

SRAM), and more specifically the main memory in most computers. In optical storage,

http://en.wikipedia.org/wiki/Read_only_memory
http://en.wikipedia.org/wiki/Flash_memory
http://en.wikipedia.org/wiki/Flash_memory#NOR_flash
http://en.wikipedia.org/wiki/Flash_memory#NOR_flash
http://en.wikipedia.org/wiki/Static_random_access_memory
http://en.wikipedia.org/wiki/Dynamic_random-access_memory
http://en.wikipedia.org/wiki/Dynamic_random-access_memory
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Flip-flop_(electronics)
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Read-only_memory
http://en.wikipedia.org/wiki/EEPROM
http://en.wikipedia.org/wiki/Flash_memory
http://en.wikipedia.org/wiki/Persistence_(computer_science)
http://en.wikipedia.org/wiki/Universal_serial_bus
http://en.wikipedia.org/wiki/Flash_memory#NAND_flash
http://en.wikipedia.org/wiki/Disk_storage
http://en.wikipedia.org/wiki/Magnetic_tape_data_storage
http://en.wikipedia.org/wiki/Flash_memory#NOR_type
http://en.wikipedia.org/wiki/Netbooks
http://en.wikipedia.org/wiki/Netbooks
http://en.wikipedia.org/wiki/Rugged_computers
http://en.wikipedia.org/wiki/ECC_memory
http://en.wikipedia.org/wiki/Parity_bit
http://en.wikipedia.org/wiki/Error_detection_and_correction#Error-correcting_code
http://en.wikipedia.org/wiki/Error_detection_and_correction#Error-correcting_code

168

the term DVD-RAM is somewhat of a misnomer since, unlike CD-RW or DVD-RW it

does not require to be erased before reuse. Nevertheless a DVD-RAM behaves much like

a hard disc drive if somewhat slower.

13.8 Cache Memory

It is a small, fast memory that is inserted between the larger slower main memory

and the processor. It holds the currently active segments of a program and their data.

The cache is a small amount of high speed memory, usually with a memory cycle time

comparable to the time required by the CPU to fetch one instruction. The cache is usually

filled from main memory when instructions or data are fetched into the CPU. Often the

main memory will supply a wider data word to the cache than the CPU requires, to fill

the cache more rapidly. The amount of information which replaces at one time in the

cache is called the line size for the cache. This is normally the width of the data bus

between the cache memory and the main memory. A wide line size for the cache means

that several instruction or data words are loaded into the cache at one time, providing a

kind of prefetching for instructions or data. Since the cache is small, the effectiveness of

the cache relies on the following properties of most programs:

Spatial locality -- most programs are highly sequential; the next instruction

usually comes from the next memory location.

Data is usually structured, and data in these structures normally are stored in

contiguous memory locations. Short loops are a common program structure, especially

for the innermost sets of nested loops. This means that the same small set of instructions

is used over and over. Generally, several operations are performed on the same data

values, or variables.

When a cache is used, there must be some way in which the memory controller

determines whether the value currently being addressed in memory is available from the

cache. There are several ways that this can be accomplished. One possibility is to store

both the address and the value from main memory in the cache, with the address stored in

a type of memory called associative memory or, more descriptively, content addressable

memory.

http://en.wikipedia.org/wiki/DVD-RAM
http://en.wikipedia.org/wiki/CD-RW
http://en.wikipedia.org/wiki/DVD-RW

169

An associative memory, or content addressable memory, has the property that when a

value is presented to the memory, the address of the value is returned if the value is

stored in the memory, otherwise an indication that the value is not in the associative

memory is returned. All of the comparisons are done simultaneously, so the search is

performed very quickly. This type of memory is very expensive, because each memory

location must have both a comparator and a storage element. A cache memory can be

implemented with a block of associative memory, together with a block of ``ordinary''

memory. The associative memory would hold the address of the data stored in the cache,

and the ordinary memory would contain the data at that address.

13.9 Virtual memory

 The address generated by the processor does not directly specify the physical

locations in the memory. The address generated by the processor is referred to as a virtual

/ logical address. The virtual address space is mapped onto the physical memory where

data are actually stored. The mapping function is implemented by a special memory

control circuit is often called the memory management unit. Only the active portion of

the address space is mapped into locations in the physical memory. The remaining virtual

addresses are mapped onto the bulk storage devices used, which are usually magnetic

disk.

As the active portion of the virtual address space changes during program execution, the

memory management unit changes the mapping function and transfers the data between

disk and memory. Thus, during every memory cycle, an address processing mechanism

determines whether the addressed in function is in the physical memory unit. If it is, then

the proper word is accessed and execution proceeds. If it is not, a page of words

containing the desired word is transferred from disk to memory. This page displaces

some page in the memory that is currently inactive.

Check your progress:

1. Expand RAM and ROM.

2. What are the different types of lines processor bus has?

3. Define Memory Access Time and Memory Cycle Time.

170

13.10 SUMMARY

 In this unit, we prescribed the most important technological and organizational

details of memory, memory speed and how apparent speed of main memory can be

increased by means of caches. We also discussed about virtual memory concepts which

increases the apparent size in main memory.

13.11 KEYWORDS

Memory

Cache Memory

RAM

DRAM

ROM

SRAM

Virtual memory

13.12 ANSWER TO CHECK YOUR PROGRESS

1. 13.1

2. 13.2

3. 13.2

13.13 UNIT-END EXERCISES AND ANSWERS

1. Explain the basic concepts of memory.

2. Explain different memory access types.

3. Write short notes on the following.

a) RAM

b) Virtual Memory

c) Cache Memory

171

Answer: SEE

1. 13.2

2. 13.5

3. 13.7, 13,8, 13.9

13.14 SUGGESTED READINGS

Text Book:

Computer Organization – Carl Hamacher, ZvonkoVranesic, SafwatZaky, MGH

publications, Fifth Edition, 2002.

Reference Books:

Digital logic and computer design: Morris Mano, PHI, 23
rd

 Reprint, October 2000.

Ronald J Toci, Digital Systems – Principles and Applications, 5th edition, PHI. 1992

172

UNIT – 14: SEMICONDUCTOR RAM MEMORIES

Structure

14.0 Objectives

14.1 Introduction

14.2 Internal organization of semiconductor memory chips

14.3 Semiconductor RAM memories

14.4 Static Memories

14.5 Dynamic Memories

14.6 Read Only Memories

14.7 Memory Hierarchy

14.8 Summary

14.9 Keywords

14.10 Answer to check your progress

14.11 Unit-end exercises and answers

14.12 Suggested readings

14.0 OBJECTIVES

 After studying this module, you will be able to

 Discuss the organization of semiconductor memories.

 Explain the different types of memories.

 Memory Hierarchy

14.1 INTRODUCTION

 The basic technology for implementing main memories uses semiconductor

integrated circuits. Semiconductor memories are available in a wide range of speeds. Due

to rapid advances in VLSI technology the cost of semiconductor memories has dropped

173

dramatically. In this unit we will present the main characteristics of semiconductor

memories.

14.2 INTERNAL ORGANIZATION OF MEMORY CHIPS:

 Memory cells are usually organized in the form of array, in which each cell is

capable of storing one bit of information. Each row of cells constitutes a memory word

and all cells of a row are connected to a common line called as word line. The cells in

each column are connected to Sense / Write circuit by two bit lines. Figure 14.1 shows

the possible arrangements of memory cells.

The Sense / Write circuits are connected to data input or output lines of the chip.

During a write operation, the sense / write circuit receives input information and stores it

in the cells of the selected word. The data input and data output of each sense / write

circuits are connected to a single bidirectional data line that can be connected to a data

bus of the cpu.

R / W → specifies the required operation.

CS → Chip Select input selects a given chip in the multi-chip memory system

Figure 14.1: Organization of bit cells in a memory chip

174

14.3 SEMI CONDUCTOR RAM MEMORIES:

Semi-Conductor memories are available is a wide range of speeds. Their cycle

time ranges from 100ns to 10ns. When first introduced in the late 1960s, they were much

more expensive. But now they are very cheap, and used almost exclusively in

implementing main memories.

14.4 STATIC MEMORIES:

Memories that consist of circuits capable of retaining their state as long as power is

applied are known as static memory.

Static random-access memory (SRAM) is a type of semiconductor memory that

uses bistable latching circuitry to store each bit. The term static differentiates it

from dynamic RAM (DRAM) which must be periodically refreshed. SRAM exhibits data

remanence, but is still volatile in the conventional sense that data is eventually lost when

the memory is not powered. Figure 14.2 shows the implementation of static RAM.

Figure 14.2: Static RAM cell

175

Two inverters are cross connected to form a latch. The latch is connected to two bit lines

by transistors T1 and T2. These transistors act as switches that can be opened / closed

under the control of the word line. When the word line is at ground level, the transistors

are turned off and the latch retains its state.

Read Operation:

In order to read the state of the SRAM cell, the word line is activated to close switches T1

and T2. If the cell is in state 1, the signal on bit line b is high and the signal on the bit line

b is low. Thus b and b
ꞌ
are complement of each other. Sense / write circuit at the end of

the bit line monitors the state of b and b
ꞌ
 and set the output according.

Write Operation:

The state of the cell is set by placing the appropriate value on bit line b and its

complement on b
ꞌ
 and then activating the word line. This forces the cell into the

corresponding state. The required signal on the bit lines are generated by Sense / Write

circuit.

Figure 14.3: CMOS cell (Complementary Metal oxide Semi-Conductor):

Transistor pairs (T3, T5) and (T4, T6) form the inverters in the latch. In state 1, the voltage

at point X is high by having T5, T6 on and T4, T5 are OFF. Thus T1 and T2 returned ON

(Closed), bit line b and b
ꞌ

will have high and low signals respectively. The CMOS

requires 5V (in older version) or 3.3.V (in new version) of power supply voltage. The

176

continuous power is needed for the cell to retain its state. A CMOS cell realization is

shown in Figure 14.3.

Merit:

 It has low power consumption because the current flows in the cell only when the cell

is being accessed.

 Static RAMs can be accessed quickly. It access time is few nanoseconds.

Demerit:

 SRAMs are said to be volatile memories because their contents are lost when the

power is interrupted.

Asynchronous DRAMS:

Less expensive RAM‟s can be implemented if simpler cells are used. Such cells cannot

retain their state indefinitely. Hence they are called Dynamic RAM’s (DRAM). The

information stored in a dynamic memory cell in the form of a charge on a capacitor and

this charge can be maintained only for a few milliseconds. The contents must be

periodically refreshed by restoring this capacitor charge to its full value.

Figure 14.4: A single transistor dynamic Memory cell

177

In order to store information in the cell, the transistor T is turned on and the appropriate

voltage is applied to the bit line, which charges the capacitor. After the transistor is

turned off, the capacitor begins to discharge which is caused by the capacitor’s own

leakage resistance. Hence the information stored in the cell can be retrieved correctly

before the threshold value of the capacitor drops down, as shown in Figure 14.4.

During a read operation, the transistor is turned on and a sense amplifier connected to the

bit line detects whether the charge on the capacitor is above the threshold value. A 16-

megabit DRAM chip configured as 2M x 8, is shown in Figure 14.5.

If charge on capacitor > threshold value →Bit line will have logic value 1.

If charge on capacitor < threshold value → Bit line will set to logic value 0.

Figure 14.5: Internal organization of a 2M X 8 dynamic Memory chip.

DESCRIPTION:

 The 4 bit cells in each row are divided into 512 groups of 8. 21 bit address is

needed to access a byte in the memory (12 bit to select a row, and 9 bits specify the group

of 8 bits in the selected row).

178

 A (0-8) → Row address of a byte.

 A (9-20) → Column address of a byte.

During Read/ Write operation, the row address is applied first. It is loaded into the row

address latch in response to a signal pulse on Row Address Strobe (RAS) input of the

chip. When a Read operation is initiated, all cells on the selected row are read and

refreshed. Shortly after the row address is loaded, the column address is applied to the

address pins and loaded into Column Address Strobe (CAS). The information in this latch

is decoded and the appropriate group of 8 Sense/Write circuits is selected. R/W =1(read

operation).

The output values of the selected circuits are transferred to the data lines D0 - D7. R/W=0

(write operation). The information on D0 - D7 is transferred to the selected circuits.

RAS and CAS are active low so that they cause the latching of address when they change

from high to low. This is because they are indicated by RAS and CAS. To ensure that the

contents of a DRAM’s are maintained, each row of cells must be accessed periodically.

Refresh operation usually perform this function automatically. A specialized memory

controller circuit provides the necessary control signals RAS and CAS that govern the

timing. The processor must take into account the delay in the response of the memory.

Such memories are referred to as Asynchronous DRAM’s.

Fast Page Mode:

Transferring the bytes in sequential order is achieved by applying the consecutive

sequence of column address under the control of successive CAS signals. This scheme

allows transferring a block of data at a faster rate. The block of transfer capability is

called as Fast Page Mode.

Synchronous DRAM:

Here the operations are directly synchronized with clock signal. The address and data

connections are buffered by means of registers. The output of each sense amplifier is

179

connected to a latch. A Read operation causes the contents of all cells in the selected row

to be loaded in these latches. The Figure 14.6 shows the structure of SDRAM.

Figure 14.6: Synchronous DRAM

Data held in the latches that correspond to the selected columns are transferred into the

data output register, thus becoming available on the data output pins.

Figure 14.7: Timing Diagram Burst Read of Length 4 in an SDRAM

180

First, the row address is latched under control of RAS signal. The memory typically takes

2 or 3 clock cycles to activate the selected row. Then the column address is latched under

the control of CAS signal. After a delay of one clock cycle, the first set of data bits is

placed on the data lines. The SDRAM automatically increments the column address to

access the next 3 sets of bits in the selected row, which are placed on the data lines in the

next 3 clock cycles. A timing diagram for a typical burst of read of length 4 is shown in

Figure 14.7.

Latency and Bandwidth:

A good indication of performance is given by two parameters. They are,

 Latency

 Bandwidth

Latency refers to the amount of time it takes to transfer a word of data to or from the

memory. For a transfer of single word, the latency provides the complete indication of

memory performance. For a block transfer, the latency denotes the time it takes to

transfer the first word of data.

Bandwidth is defined as the number of bits or bytes that can be transferred in one

second. Bandwidth mainly depends upon the speed of access to the stored data and on the

number of bits that can be accessed in parallel.

Double Data Rate SDRAM (DDR-SDRAM):

The standard SDRAM performs all actions on the rising edge of the clock signal.

The double data rate SDRAM transfer data on both the edges (loading edge, trailing

edge). The Bandwidth of DDR-SDRAM is doubled for long burst transfer. To make it

possible to access the data at high rate, the cell array is organized into two banks. Each

bank can be accessed separately. Consecutive words of a given block are stored in

different banks. Such interleaving of words allows simultaneous access to two words that

are transferred on successive edge of the clock.

181

14.5 Dynamic Memory System:

The physical implementation is done in the form of Memory Modules. If a large

memory is built by placing DRAM chips directly on the main system printed circuit

board that contains the processor, often referred to as Motherboard; it will occupy large

amount of space on the board. These packaging consideration have led to the

development of larger memory units known as SIMM’s and DIMM’s

SIMM-Single Inline memory Module

DIMM-Dual Inline memory Module

SIMM and DIMM consist of several memory chips on a separate small board

that plugs vertically into single socket on the motherboard.

MEMORY SYSTEM CONSIDERATION:

To reduce the number of pins, the dynamic memory chips use multiplexed

address inputs. The address is divided into two parts. They are,

High Order Address Bit (Select a row in cell array and it is provided first and

latched into memory chips under the control of RAS signal).

Low Order Address Bit (Selects a column and they are provided on same address

pins and latched using CAS signals).

The Multiplexing of address bit is usually done by Memory Controller Circuit, as shown

in Figure 14.8.

182

Figure 14.8: Use of Memory Controller

The Controller accepts a complete address and R/W signal from the processor, under

the control of a request signal which indicates that a memory access operation is needed.

The Controller then forwards the row and column portions of the address to the memory

and generates RAS and CAS signals. It also sends R/W and CS signals to the memory.

The CS signal is usually active low, hence it is shown as CS.

Refresh Overhead:

All dynamic memories have to be refreshed. In DRAM, the period for refreshing all

rows is 16ms whereas 64ms in SDRAM.

Example: Given a cell array of 8K (8192).

 Clock cycle=4

 Clock Rate=133MHZ

 No of cycles to refresh all rows = 8192*4 =32,768

 Time needed to refresh all rows = 32768/133*106 =246*10-6 sec

=0.246sec

 Refresh Overhead = 0.246/64

 Refresh Overhead = 0.003

183

Rambus Memory:

 The usage of wide bus is expensive. Rambus developed the implementation of

narrow bus. Rambus technology is a fast signaling method used to transfer information

between chips. Instead of using signals that have voltage levels of either 0 or Vsupply to

represent the logical values, the signals consist of much smaller voltage swings around a

reference voltage Vref. The reference Voltage is about 2V and the two logical values are

represented by 0.3V swings above and below Vref.

This type of signaling is generally is known as Differential Signaling. Rambus

provides a complete specification for the design of communication links (Special

Interface circuits) called as Rambus Channel. Rambus memory has a clock frequency of

400MHZ. The data are transmitted on both the edges of the clock so that the effective

data transfer rate is 800MHZ.

The circuitry needed to interface to the Rambus channel is included on the chip. Such

chips are known as Rambus DRAMs (RDRAM).

Rambus channel has,

 9 Data lines (1- → Parity checking).

 Control line

 Power line

A two channel Rambus has 18 data lines which have no separate address lines. It is also

called as Direct RDRAM’s. Communication between processor or some other device that

can serves as a master and RDRAM modules are served as slaves, is carried out by means

of packets transmitted on the data lines.

There are 3 types of packets. They are,

 Request

 Acknowledge

 Data

184

14.6 READ ONLY MEMORY (ROM):

Both SRAM and DRAM chips are volatile, which means that they lose the stored

information if power is turned off. Many applications require Non-volatile memory

(which retains the stored information if power is turned off).

E.g.: Operating System software has to be loaded from disk to memory which requires

the program that boots the Operating System. i.e., it requires non-volatile memory. Non-

volatile memory is used in embedded system. Since the normal operation involves only

reading of stored data, a memory of this type is called ROM.

Figure 14.9: ROM cell

At Logic value ‘0’ → Transistor (T) is connected to the ground point (P). Transistor

switch is closed and voltage on bit line nearly drops to zero.

At Logic value ‘1’ → Transistor switch is open. The bit line remains at high voltage. To

read the state of the cell, the word line is activated. A Sense circuit at the end of the bit

line generates the proper output value.

Different types of non-volatile memory are:

 PROM

 EPROM

 EEPROM

 Flash Memory

185

PROM: Programmable ROM:

 PROM allows the data to be loaded by the user. Programmability is achieved by

inserting a fuse at point P in a ROM cell. Before it is programmed, the memory contains

all 0’s. The user can insert 1’s at the required location by burning out the fuse at these

locations using high current pulse. This process is irreversible.

Merit:

 It provides flexibility.

 It is faster.

 It is less expensive because they can be programmed directly by the user.

EPROM - Erasable reprogrammable ROM:

 EPROM allows the stored data to be erased and new data to be loaded. In an

EPROM cell, a connection to ground is always made at ‘P’ and a special transistor is

used, which has the ability to function either as a normal transistor or as a disabled

transistor that is always turned off. This transistor can be programmed to behave as a

permanently open switch, by injecting charge into it that becomes trapped inside.

 Erasure requires dissipating the charges trapped in the transistor of memory cells.

This can be done by exposing the chip to ultraviolet light, so that EPROM chips are

mounted in packages that have transparent windows.

Merits:

 It provides flexibility during the development phase of digital system.

 It is capable of retaining the stored information for a long time.

Demerits:

 The chip must be physically removed from the circuit for reprogramming and its

entire contents are erased by UV light.

186

EEPROM:-Electrically Erasable ROM:

EEPROM (also written E
2
PROM and pronounced "e-e-prom," "double-e prom,"

"e-squared," or simply "e-prom") stands for Electrically Erasable Programmable Read-

Only Memory and is a type of non-volatile memory used in computers and other

electronic devices to store small amounts of data that must be saved when power is

removed, e.g., calibration tables or device configuration.

When larger amounts of static data are to be stored (such as in USB flash drives) a

specific type of EEPROM such as flash memory is more economical than traditional

EEPROM devices. EEPROMs are realized as arrays of floating-gate transistors.

EEPROM is user modifiable read only memory (ROM) that can be erased and

reprogrammed (written to) repeatedly through the application of higher than normal

electrical voltage generated externally or internally in the case of modern

EEPROMs. EPROM usually must be removed from the device for erasing and

programming, whereas EEPROMs can be programmed and erased in circuit. Originally,

EEPROMs were limited to single byte operations which made them slower, but modern

EEPROMs allow multi-byte page operations. It also has a limited life - that is, the

number of times it could be reprogrammed was limited to tens or hundreds of thousands

of times. That limitation has been extended to a million write operations in modern

EEPROMs. In an EEPROM that is frequently reprogrammed while the computer is in

use, the life of the EEPROM can be an important design consideration. It is for this

reason that EEPROMs were used for configuration information, rather than random

access memory.

Merits:

It can be both programmed and erased electrically.

It allows the erasing of all cell contents selectively.

Demerits:

It requires different voltage for erasing, writing and reading the stored data.

187

FLASH MEMORY:

 In EEPROM, it is possible to read and write the contents of a single cell. In Flash

device, it is possible to read the contents of a single cell but it is only possible to write the

entire contents of a block. Prior to writing, the previous contents of the block are erased.

 E.g.: In MP3 player, the flash memory stores the data that represents sound.

Single flash chips cannot provide sufficient storage capacity for embedded system

application. There are 2 methods for implementing larger memory modules consisting of

number of chips. They are,

 Flash Cards

 Flash Drives.

Merits:

 Flash drives have greater density which leads to higher capacity and low cost per

bit.

 It requires single power supply voltage and consumes less power in their

operation.

Flash Cards:

One way of constructing larger module is to mount flash chips on a small card.

Such flash card have standard interface. The card is simply plugged into a conveniently

accessible slot. Its memory size is of 8, 32,64MB. E.g.: A minute of music can be stored

in 1MB of memory. Hence 64MB flash cards can store an hour of music.

Flash Drives:

Larger flash memory module can be developed by replacing the hard disk drive. The

flash drives are designed to fully emulate the hard disk. The flash drives are solid state

electronic devices that have no movable parts.

Merits:

 They have shorter seek and access time which results in faster response.

188

 They have low power consumption which makes them attractive for battery

driven application.

 They are insensitive to vibration.

Demerit:

 The capacity of flash drive (<1GB) is less than hard disk (>1GB).

 It leads to higher cost per bit.

 Flash memory will deteriorate after it has been written a number of times

(typically at least 1 million times.)

SPEED, SIZE COST:

Magnetic Disk:

A huge amount of cost effective storage can be provided by magnetic disk. The main

memory can be built with DRAM which leaves SRA’s to be used in smaller units where

speed is of essence.

14.7 MEMORY HIERARCHY

189

 To this point in our study of systems, we have relied on a simple model of a

computer system as a CPU that executes instructions and a memory system that holds

instructions and data for the CPU. In our simple \model, the memory system is a linear

array of bytes, and the CPU can access each memory location in a constant amount of

time. While this is an effective model as far as it goes, it does not reflect the way that

modern systems really work. In practice, a memory system is a hierarchy of storage

devices with different capacities, costs, and access times. CPU registers hold the most

frequently used data. Small, fast cache memories nearby the CPU act as staging areas for

a subset of the data and instructions stored in the relatively slow main memory. The main

memory stages data stored on large, slow disks, which in turn often serve as staging areas

for data stored on the disks or tapes of other machines connected by networks.

Memory hierarchies work because well written programs tend to access the storage at any

particular level more frequently than they access the storage at the next lower level. So

the storage at the next level can be slower, and thus larger and cheaper per bit. The

overall effect is a large pool of memory that costs as much as the cheap storage near the

bottom of the hierarchy, but that serves data to programs at the rate of the fast storage

near the top of the hierarchy. As a programmer, you need to understand the memory

hierarchy because it has a big impact on the performance of your applications. If the data

your program needs are stored in a CPU register, then they can be accessed in zero cycles

during the execution of the instruction. If stored in a cache, 1 to 30 cycles. If stored in

main memory, 50 to 200 cycles. And if stored in disk tens of millions of cycles!. The

entire computer memory can be realized as the hierarchy shown in the Figure 14.10.

Here, then, is a fundamental and enduring idea in computer systems: If you understand

how the system moves data up and down the memory hierarchy, then you can write your

application programs so that their data items are stored higher in the hierarchy, where the

CPU can access them more quickly. This idea centers on a fundamental property of

computer programs known as locality. Programs with good locality tend to access the

same set of data items over and over again, or they tend to access sets of nearby data

items. Programs with good locality tend to access more data items from the upper levels

of the memory hierarchy than programs with poor locality, and thus run faster. For

example, the running times of different matrix multiplication kernels that perform the

190

same number of arithmetic operations, but have different degrees of locality, can vary by

a factor of 20!

Processor

Primary
cache

Secondary
cache

Main

Magnetic disk

memory

Increasing
size

Increasing
speed

secondary
memory

Increasing
cost per bit

Registers

L1

L2

Figure 14.10: Memory Hierarchy

Types of Cache Memory:

The Cache memory is of 2 types. They are:

 Primary /Processor Cache (Level1 or L1 cache)

 Secondary Cache (Level2 or L2 cache)

Primary Cache → It is always located on the processor chip.

Secondary Cache → It is placed between the primary cache and the rest of the

memory.

191

The main memory is implemented using the dynamic components (SIMM, RIMM, and

DIMM). The access time for main memory is about 10 times longer than the access time

for L1 cache.

Check your progress:

1. What is a semiconductor memory?

2. What is RAMBUS memory?

3. What are the different types of memory? Explain briefly the different operations

performed on static memories.

14.8 SUMMARY

 In this unit we discussed the common components and organizations used to

implement the main memory. Then we examined memory speed and discussed how the

apparent speed of the main memory can be increased by means of caches. We also

discussed about the concept of ROM, it verities, their significance, architecture, uses and

their limitations. We finally concluded with hierarchy of memory.

14.9 KEYWORDS

Memory

Memory chips

RAM, DRAM, SDRAM

RAMBUS

ROM, PROM, EPROM, EEPROM, Flash Memory

192

14.10 ANSWERS TO CHECK YOUR PROGRESS

1. 14.1

2. 14.5

3. 14.3..14.6

14.11 UNIT-END EXERCISES AND ANSWERS

1. Discuss the importance of memory in a computing system.

2. Expand RAM. Also explain semiconductor RAM memories.

3. With a neat diagram, explain the organization of a memory chip.

Answers: SEE

1 14.2

2 14.3

3 14.2

14.12 SUGGESTED READINGS

Text Book:

Computer Organization – Carl Hamacher, ZvonkoVranesic, SafwatZaky, MGH

publications, Fifth Edition, 2002.

Reference Books:

Digital logic and computer design: Morris Mano, PHI, 23
rd

 Reprint, October 2000.

Ronald J Toci, Digital Systems – Principles and Applications, 5th edition, PHI. 1992

193

UNIT – 15: CACHE MEMORIES

Structure

15.0 Objectives

15.1 Introduction

15.2 Cache memory concept

15.3 Cache memory design parameters

15.4 Mapping Functions

15.5 Replacement Algorithms

15.6 Performance Considerations

 15.6.1 Interleaving

 15.6.2 Hit Rate and Miss Penalty

 15.6.3 Caches on Processing Chips

 15.6.4 Other Enhancements

15.7 Summary

15.8 Keywords

15.9 Answer to check your progress

15.10 Unit-end exercises and answers

15.11 Suggested readings

15.0 OBJECTIVES

After going through this module, you should be able to

 Understand the concept of Cache Memories

 Discuss their mapping functions,

 Replacement algorithms

 Performance considerations.

15.1 INTRODUCTION

 The cache is a smaller, faster memory which stores copies of the data from the

most frequently used main memory locations. As long as most memory accesses are

194

cached memory locations, the average latency of memory accesses will be closer to the

cache latency than to the latency of main memory. In this unit, we discuss the concepts

related to cache memory, the need for it, their architecture, their working.

15.2 CACHE MEMORY CONCEPT

Cache memory is an integral part of every system now. Cache memory is random

access memory (RAM) that a computer microprocessor can access more quickly than it

can access regular RAM. As the microprocessor processes data, it looks first in the cache

memory and if it finds the data there (from a previous reading of data), it does not have to

do the more time consuming reading of data from larger memory.

 The effectiveness of cache mechanism is based on the property of Locality of

reference.

Locality of Reference:

During some time period and remainder of the program is accessed relatively

infrequently. It manifests itself in 2 ways. They are Temporal (The recently executed

instruction are likely to be executed again very soon), Spatial (The instructions in close

proximity to recently executed instruction are likely to be executed soon). If the active

segment of the program is placed in cache memory, then the total execution time can be

reduced significantly.

If the active segment of a program can be placed in a fast cache memory, then the

total execution time can be reduced significantly. The operation of a cache memory is

very simple. The memory control circuitry is designed to take advantage of the property

of locality of reference. The term Block refers to the set of contiguous address locations

of some size. The cache line is used to refer to the cache block.

195

Figure 15.1: Use of Cache Memory

 The Figure 15.1 shows arrangement of Cache between processor and main

memory. The Cache memory stores a reasonable number of blocks at a given time but

this number is small compared to the total number of blocks available in Main Memory.

The correspondence between main memory block and the block in cache memory is

specified by a mapping function. The Cache control hardware decides that which block

should be removed to create space for the new block that contains the referenced word.

The collection of rule for making this decision is called the replacement algorithm. The

cache control circuit determines whether the requested word currently exists in the cache.

If it exists, then Read/Write operation will take place on appropriate cache location. In

this case Read/Write hit will occur. In a Read operation, the memory will not be

involved.

The write operation proceeds in 2 ways. They are:

 Write-through protocol

 Write-back protocol

Write-through protocol:

 Here the cache location and the main memory locations are updated

simultaneously.

MAIN

MEMORY

PROCESSOR

CACHE

196

Write-back protocol:

This technique is to update only the cache location and to mark it as with

associated flag bit called dirty/modified bit. The word in the main memory will be

updated later, when the block containing this marked word is to be removed from the

cache to make room for a new block. If the requested word currently does not exist in the

cache during read operation, then read miss will occur. To overcome the read miss Load

–through / early restart protocol is used.

Read Miss:

The block of words that contains the requested word is copied from the main

memory into cache.

Load –through:

After the entire block is loaded into cache, the particular word requested is

forwarded to the processor. If the requested word does exist in the cache during write

operation, then Write Miss will occur. If Write through protocol is used, the information

is written directly into main memory. If Write back protocol is used then blocks

containing the addressed word is first brought into the cache and then the desired word in

the cache is overwritten with the new information.

15.3 CACHE MEMORY DESIGN PARAMETERS

There are two cache design parameters that dramatically influence the cache

performance: the block size and the cache associability. There are also many other

implementation techniques both hardware and software that improve the cache

performance but they are not discussed here.

The simplest way to reduce the miss rate is to increase the block size. However

increasing the block size also increases the miss penalty (which is the time to load a block

from main memory into cache) so there is a trade–off between the block size and miss

penalty. We can increase the block size up to a level at which the miss rate is decreasing

197

but we also have to be sure that this benefit will not be exceeded by the increased miss

penalty.

The second cache design parameter that reduces cache misses is the associability. There

is an empirical result called the 2:1 rule of thumb which states that a direct mapped cache

of size N has about the same miss rate as a 2 way set associative cache of size N/2.

Unfortunately an increased associability will have a bigger hit time. More time will be

taken to retrieve a block inside of an associative cache than in a direct mapped cache. To

retrieve a block in an associative cache, the block must be searched inside of an entire set

since there is more than one place where the block can be stored.

Based on the cause that determines a cache miss we can classify the cache misses as

compulsory, capacity and conflict misses. This classification is called the 3C model.

Compulsory misses are issued when a first access is done to a block that is not in the

memory, so the block must be brought into cache. Increasing block size can reduce

compulsory misses due to prefetching the other elements in the block. If the cache cannot

contain all the blocks needed during the execution of a program, capacity misses will

occur due to blocks being discarded and later retrieved. If the block-placement strategy is

set associative or direct mapped, conflict misses (in addition to compulsory and capacity

misses) will occur because a block can be discarded and later retrieved if too many

blocks map to its set. Increasing the associability in general reduce the number of conflict

misses and implicitly the runtime of the programs. However this is not true all the time.

Minimizing the cache misses does not necessarily minimize the runtime. For example,

there can be fewer cache misses with more memory accesses.

15.4 Mapping Function:

Direct Mapping:

It is the simplest technique in which block j of the main memory maps onto block

‘J’ modulo 128 of the cache. Thus whenever one of the main memory blocks 0, 128, 256

is loaded in the cache, it is stored in block 0. Block 1, 129, 257 are stored in cache block

1 and so on. The contention may arise when the cache is full, when more than one

198

memory block is mapped onto a given cache block position. The contention is resolved

by allowing the new blocks to overwrite the currently resident block. Placement of block

in the cache is determined from memory address.

The memory address is divided into 3 fields, namely,

 Low Order 4 bit field (word) → Select one of 16 words in a block.

 7 bit cache block field → When new block enters cache, 7 bit determines the

cache position in which this block must be stored.

 5 bit Tag field → The high order 5 bits of the memory address of the block is

stored in 5 tag bits associated with its location in the cache.

As execution proceeds, the high order 5 bits of the address is compared with tag bits

associated with that cache location. If they match, then the desired word is in that block

of the cache. If there is no match, then the block containing the required word must be

first read from the main memory and loaded into the cache. The direct mapping is shown

in Figure 15.2.

tag

tag

tag

Cache

Main
memory

Block 0

Block 1

Block 127

Block 128

Block 129

Block 255

Block 256

Block 257

Block 4095

Block 0

Block 1

Block 127

7 4 Main memory address

Tag Block Word

5

Figure 15.2: Direct Mapped Cache

199

Merit:

 It is easy to implement.

Demerit:

 It is not very flexible.

Associative Mapping:

Here, the main memory block can be placed into any cache block position.12 tag

bits will identify a memory block when it is resolved in the cache. The tag bits of an

address received from the processor are compared to the tag bits of each block of the

cache to see if the desired block is present. This is called associative mapping. It gives

complete freedom in choosing the cache location. A new block that has to be brought into

the cache has to replace (eject) an existing block if the cache is full.

4

tag

tag

tag

Cache

Main
memory

Block 0

Block 1

Block i

Block 4095

Block 0

Block 1

Block 127

12 Main memory address

Tag Word

Figure 15.3: Associative Mapped Cache.

200

In this method, the memory has to determine whether a given block is in the

cache. A search of this kind is called an associative Search. The associative-mapped

cache is shown in Figure 15.3.

Merit:

 It is more flexible than direct mapping technique.

Demerit:

 Its cost is high.

Set-Associative Mapping:

It is the combination of direct and associative mapping. The blocks of the cache are

grouped into sets and the mapping allows a block of the main memory to reside in any

block of the specified set. In this case, the cache has two blocks per set, so the memory

blocks 0, 64, 128……..4032 map into cache set to 0 and they can occupy either of the

two block position within the set.

6 bit set field → Determines which set of cache contains the desired block.

6 bit tag field → the tag field of the address is compared to the tags of the two blocks

of the set to clock if the desired block is present.

4

tag

tag

tag

Cache

Main
memory

Block 0

Block 1

Block i

Block 4095

Block 0

Block 1

Block 127

12 Main memory address

Tag Word

201

Figure 15.4: Set-Associative Mapping:

The cache which contains 1 block per set is called direct Mapping. A cache that

has ‘k’ blocks per set is called as k-way set associative cache. Each block contains a

control bit called a valid bit. The Valid bit indicates that whether the block contains valid

data. The dirty bit indicates that whether the block has been modified during its cache

residency. The set-associative mapping is shown in Figure 15.4.

Valid bit=0→When power is initially applied to system

Valid bit =1→When the block is loaded from main memory at first

time.

If the main memory block is updated by a source and if the block in the source is

already exists in the cache, then the valid bit will be cleared to ‘0’. If Processor and DMA

use the same copies of data then it is called as the Cache Coherence Problem.

Merit:

 The Contention problem of direct mapping is solved by having few choices for block

placement.

 The hardware cost is decreased by reducing the size of associative search.

No of blocks per set

No of set field

2

3

8

128

6

5

4

no set field

202

15.5 REPLACEMENT ALGORITHM:

In a direct-mapped cache, the position of each block is predetermined: hence, no

replacement strategy exists. In associative and set-associative caches there exists some

flexibility. When a new block is to be brought into the cache and all the positions that it

may occupy are full, the cache controller must decide which of the old blocks to

overwrite. This is an important issue, because the decision can be a strong determining

factor in system performance. In general, the objective is to keep blocks in the cache that

are likely to be referenced in the near future. However, it is not easy to determine which

blocks are about to be referenced. The property of locality of reference in programs gives

a clue to a reasonable strategy. Because, programs usually stay in localized areas for

reasonable periods of time, there is a high probability that the blocks that have been

referenced recently will be referenced again soon. Therefore, when a block is to be

overwritten, it is sensible to overwrite the one that has gone the longest time without

being referenced. This block is called the least recently used (LW) block, and the

technique is called the LRU replacement algorithm. To use the LRU algorithm, the cache

controller must track references to all blocks as computation proceeds. Suppose it is

required to track the LRU block of a four block set in a set-associative cache. A 2-bit

counter can be used for each block. When a hit occurs, the counter of the block that is

referenced is set to 0. Counters with values originally lower than the referenced one are

incremented by one, and all others remain unchanged. When a miss occurs and the set is

not full, the counter associated with the new block loaded from the main memory is set to

0, and the values of all other counters are increased by one. When a miss occurs and the

set is full, the block with the counter value 3 is removed, the new block is put in its place,

and its counter is set to 0. The other three block counters are incremented by one (It can

be easily verified that the counter values of occupied blocks are always distinct). The

LRU algorithm has been used extensively. Although it performs well for many access

patterns, it can lead to poor performance in some cases. For example, it produces

disappointing results when accesses are made to sequential elements of an array that is

slightly too large to fit into the cache. Performance of the LRU algorithm can be

improved by introducing a small amount of randomness in deciding which block to

203

replace. Several other replacement algorithms are also used in practice. An intuitively

reasonable rule would be to remove the "oldest" block from a full set when a new block

must be brought in. However, because this algorithm does not take into account the

recent pattern of access to blocks in the cache, it is generally not as effective as the LRU

algorithm in choosing the best blocks to remove. The simplest algorithm is to randomly

choose the block to be overwritten. Interestingly enough, this simple algorithm has been

found to be quite effective in practice.

Example: Let us consider 4 blocks/set, in set associative cache, where 2 bit counter can

be used for each block. When a ‘hit’ occurs, then block counter = 0, the counter with

values originally lower than the referenced one are incremented by 1 and all others

remain unchanged. When a ‘miss’ occurs and if the set is full, the blocks with the counter

value 3 is removed, the new block is put in its place and its counter is set to ‘0’ and other

block counters are incremented by 1.

Merit:

 The performance of LRU algorithm is improved by randomness in deciding

which block is to be overwritten.

15.6 PERFORMANCE CONSIDERATION:

Two Key factors in the commercial success are the performance and cost where the

best possible performance is at low cost. A common measure of success is called the

Price Performance ratio.

Performance depends on how fast the machine instructions are brought to the processor

and how fast they are executed. To achieve parallelism (i.e., both the slow and fast units

are accessed in the same manner) interleaving is used.

204

15.6.1 Interleaving:

If the main memory is structured as a collection of physically separated modules, each

with its own ABR (Address buffer register) and DBR(Data buffer register), memory

access operations may proceed in more than one module at the same time. Thereby the

aggregate rate of transmission of words to and from the main memory system can be

increased.

Two methods of address layout are indicated in Figure 15.5. In the first case, memory

address generated by the processor is decoded as shown in part (a) of the figure. The

high-order k bits name one of n modules and the low-order m bits name a particular

word in that module. When consecutive locations are accessed, only one module is

involved. At the same time, devices with DMA ability may be accessing information in

other modules.

In the second case, as shown in part (b) of the figure, which is called memory

interleaving. The low-order k bits of the memory address select a module, and the high-

order m bits name a location within the module. Thus, any component of the system that

generates requests for access to consecutive memory locations can keep several modules

busy at any one time which results in both faster access to a block of data and higher

average utilization of the memory system as a whole.

205

Figure 15.5: Addressing multiple-module memory system

15.6.2 HIT RATE AND MISS PENALTY

 An excellent indicator of the effectiveness of a particular implementation of the

memory hierarchy is the success rate in accessing information at various levels of the

hierarchy. Recall that a successful access to data in a cache is called a hit. The number of

hits stated as a fraction of all attempted accesses is called the hit rate, and the miss rate is

the number of misses stated as a fraction of attempted accesses. Ideally, the entire

memory hierarchy would appear to the CPU as a single memory unit that has the access

time of a cache on the CPU chip and the size of a magnetic disk. How close we get to this

ideal depends largely on the hit rate at different levels of the hierarchy. High hit rates,

206

over 0.9, are essential for high performance computers. Performance is adversely affected

by the actions that must be taken after a miss. The extra time needed to bring the desired

information into the cache is called the Miss penalty. This penalty is ultimately reflected

in the time that the CPU is stalled because the required instructions or data are not

available for execution. In general, the miss penalty is the time needed to bring a block of

data from a slower unit in the memory hierarchy to a faster unit. The miss penalty is

reduced if efficient mechanisms for transferring data between the various units of the

hierarchy are implemented. The previous section shows how an interleaved memory can

reduce the miss penalty substantially. Consider now the impact of the cache on the

overall performance of the computer. Let h be the hit rate, M the miss penalty, that is, the

time to access information in the main memory, and C the time to access information in

the cache. The average access time experienced by the CPU is hC + (1 – h) M.

15.6.3 CACHES ON PROCESSING CHIPS

When information is transferred between different chips, considerable delays are

introduced in driver and receiver gates on the chips. Thus, from the speed point of view,

the optimal place for a cache is on the CPU chip. Unfortunately, space on the CPU chip is

needed for many other functions: this limits the size of the cache that can be

accommodated. All high performance processor chips include some form of a cache.

Some manufacturers have chosen to implement two separate caches, one for instructions

and another for data, as in the 68040 and PowerPC 604 processors. Others have

implemented a single cache for both instructions and data, as in the PowerPC 601

processor. A combined cache for instructions and data is likely to have a somewhat better

hit rate, because it offers greater flexibility in mapping new information into the cache.

However, if separate caches arc used, it is possible to access both caches at the same

time, which leads to increased parallelism and, hence, better performance. The

disadvantage of separate caches is that the increased parallelism comes at the expense of

more complex circuitry. Since the Size of a cache on the CPU chip is limited by space

constraints, a good strategy for designing a high performance system is to use such a

cache as a primary cache. An external secondary cache, constructed with SRAM chips, is

207

then added to provide the desired capacity. If both primary and secondary caches are

used, the primary cache should be designed to allow very fast access by the CPU,

because its access time will have a large effect on the clock rate of the CPU. A cache

cannot be accessed at the same speed as a register file, because the cache is much bigger

and hence more complex. A practical way to speed up access in the cache is to access

more than one word simultaneously and then let the CPU use them one at a time. The

secondary cache can be considerably slower, but it should be much larger to ensure a

high hit rate. Its speed is less critical, because it only affects the miss penalty of the

primary cache. A workstation computer may include a primary cache with the capacity of

tens of kilobytes and a secondary cache of several megabytes.

15.6.4 OTHER ENHANCEMENTS

 In addition to the main design issues just discussed, several other possibilities

exist for enhancing performance. We discuss three of them in this section.

Write Buffer

 When the write-through protocol is used, each write operation results in writing a

new value into the main memory. If the CPU must wait for the memory function to be

completed, as we have assumed until now, then the CPU is slowed down by all write

requests. Yet the CPU typically does not immediately depend on the result of a write

operation, so it is not necessary for the CPU to wait for the write request to be completed.

To improve performance, a write buffer can be included for temporary storage of write

requests. The CPU places each write request into this buffer and continues execution of

the next instruction. The write requests stored in the write buffer are sent to the main

memory whenever the memory is not responding to read requests. Note that it is

important that the read requests be serviced immediately, because the CPU usually

cannot proceed without the data that is to be read from the memory. Hence, these

requests are given priority over write requests. The write buffer may hold a number of

write requests. Thus, it is possible that a subsequent read request may refer to data that

are still in the write buffer. To ensure correct operation, the addresses of data to be read

208

from the memory are compared with the addresses of the data in the write buffer. In case

of a match, the data in the write buffer are used. This need for address comparison entails

considerable cost. But the cost is justified by improved performance. A different situation

occurs with the write-back protocol. In this case, the write operations are simply

performed on the corresponding word in the cache. But consider what happens when a

new block of data is to be brought into the cache as a result of a read miss, which replaces

an existing block that has some dirty data. The dirty block has to be written into the main

memory. If the required write-back is performed first, then the CPU will have to wait

longer for the new block to be read into the cache. It is more prudent to read the new

block first. This can be arranged by providing a fast write buffer for temporary storage of

the dirty block that is ejected from the cache while the new block is being read.

Afterward, the contents of the buffer are written into the main memory. Thus, the write

buffer also works well for the write-back protocol.

Prefetching

 In the previous discussion of the cache mechanism, we assumed that new data are

brought into the cache when they are first needed. A read miss occurs, and the desired

data are loaded from the main memory. The CPU has to pause until the new data arrive,

which is the effect of the miss penalty. To avoid stalling the CPU, it is possible to

prefetch the data into the cache before they are needed. The simplest way to do this is

through software. A special prefetch instruction may be provided in the instruction set of

the processor. Executing this instruction causes the addressed data to be loaded into the

cache, as in the case of a read miss. However, the processor does not wait for the

referenced data. A prefetch instruction is inserted in a program to cause the data to be

loaded in the cache by the time they are needed in the program. The hope is that

prefetching will take place while the CPU is busy executing instructions that do not result

in a read miss, thus allowing accesses to the main memory to be overlapped with

computation in the CPU. Prefetch instructions can be inserted into a program either by

the programmer or by the compiler. It is obviously preferable to have the compiler insert

these instructions, which can be done with good success for many applications. Note that

209

software prefetching entails a certain overhead; because inclusion of prefetch instructions

increases the length of programs. Moreover, some prefetches may load into the cache

data that will not be used by the instruction. This can happen if the prefetched data are

ejected from the cache by a read miss involving other data. However, the overall effect of

software prefetching on performance is positive, and many processors (including the

PowerPC) have machine instructions to support this feature. Prefetching can also be done

through hardware. This involves adding circuitry that attempts to discover a pattern in

memory references, and then prefetches data according to this pattern.

Lockup-Free

 Cache the software prefetehing scheme just discussed does not work well if it

interferes significantly with the normal execution of instructions. This is the case if the

action of prefetehing stops other accesses to the cache until the prefetch is completed. A

cache of this type is said to be locked while it services a miss. We can solve this problem

by modifying the basic cache structure to allow the CPU to access the cache while a miss

is being serviced. In fact, it is desirable that more than one outstanding miss can be

supported. A cache that can support multiple outstanding misses is called lockup-free.

Since it can service only one miss at a time, it must include circuitry that keeps track of

all outstanding misses. This may be done with special registers that hold the pertinent

information about these misses. Lockup-free caches were first used in the early l980s in

the Cyber series of computers manufactured by Control Data Company.

We have used software prefetching as an obvious motivation for a cache that is not

locked by a read miss. A much more important reason is that, in a processor that uses a

pipelined organization, which overlaps the execution of several instructions, a read miss

caused by one instruction could stall the execution of other instructions. A lockup-free

cache reduces the likelihood of such stalling.

Check your Progress:

1. What is a cache memory?

2. What is the importance of cache memory

210

3. Briefly explain the different performance considerations for caching

technique.

15.7 SUMMARY

In this unit, we have discussed issues related to cache memories, their varieties,

mapping functions, replacement algorithms related to caching. Also, we have discussed

issues like performance and cost related to the usage and implementation of these

concepts.

15.8 KEYWORDS

Cache Memory

Mapping Functions

Replacement Algorithms

 Performance Considerations

15.9 ANSWER TO CHECK YOUR PROGRESS

1. 15.1

2. 15.2

3. 15.6

15.9 EXERCISES

1. What are the different mapping functions that are used in caching?

2. Discuss the set-associative-mapped method for mapping in detail.

3. Discuss the LRU replacement algorithm used in each of the mapping function in

detail.

4. What are the other enhancements to improve performance.

211

Answer: SEE

1. 15.4

2. 15.4

3. 15.5

4. 15.6

15.10 SUGGESTED READINGS

Text Book:

Computer Organization – Carl Hamacher, ZvonkoVranesic, SafwatZaky, MGH

publications, Fifth Edition, 2002.

Reference Books:

Digital logic and computer design: Morris Mano, PHI, 23
rd

 Reprint, October 2000.

Ronald J Toci, Digital Systems – Principles and Applications, 5th edition, PHI. 1992

212

__

UNIT – 16: VIRTUAL MEMORIES

Structure

16.0 Objectives

16.1 Introduction

16.2 Virtual Memory concept

16.3 Memory Management by Paging

16.4 Memory Management by Segmentation

16.5 Virtual Memory Address Translation

16.6 Summary

16.7 Keywords

16.8 Answers to check your progress

16.9 Unit-end exercises and answers

16.10 Suggested Readings

16.0 OBJECTIVES

After studying this module, you will be able to

 Understand the concept of virtual concept, their managements.

 Memory management by paging

 Memory management by segmentation

 Memory management requirements

 Virtual memory address translation

16.1 INTRODUCTION

 Virtual memory is another important concept related to memory organization. Till

now, we have assumed that the addresses generated by the processor directly specify

213

physical locations in the memory. This may not always be the case. For reasons that will

become apparent that data may be stored in physical memory locations that have

addresses different from those specified by the program. The memory control circuitry

translates the address specified by the program into an address generated by the processor

is referred to as a virtual or logical address. The virtual address space is mapped onto the

physical memory where data are actually stored.

16.2 VIRTUAL MEMORY CONCEPT

 Techniques that automatically move program and data blocks into the physical

main memory when they are required for execution is called the Virtual Memory

Techniques. The binary address that the processor issues either for instruction or data is

called the virtual / logical address. The virtual address is translated into physical address

by a combination of hardware and software components. This kind of address translation

is done by MMU (Memory Management Unit). When the desired data are in the main

memory, these data are fetched / accessed immediately. If the data are not in the main

memory, The MMU causes the operating system to bring the data into memory from the

disk. Transfer of data between disk and main memory is performed using DMA scheme.

214

Figure 5.26.Virtual memory organization.

Data

Data

DMA transf er

Phy sical address

Phy sical address

Virtual address

Disk storage

Main memory

Cache

MMU

Processor

Figure 16.1: Virtual Memory Organization

16.3 MEMORY MANAGEMNT BY PAGING:

In Paged memory management, each job’s address space is divided into equal size

pieces called pages, and likewise physical memory is divided into equal sized pieces of

the same size as a page called blocks. Then by providing a suitable hardware mapping

facility, any page can be mapped onto any block. The pages remain logically contiguous,

but the corresponding blocks are not contiguous.

 For the hardware to perform the mapping from address space to physical memory

there must be a separate register for each page, these registers are called as page maps or

Page Map Tables (PMTs).

Page Table:

It contains the information about the main memory address where the page is

stored and the current status of the page.

215

Page Frame:

An area in the main memory that holds one page is called the page frame.

Page Table Base Register:

It contains the starting address of the page table.

Virtual Page Number + Page Table Base register → Gives the address of the

corresponding entry in the page table i.e., it gives the starting address of the page if that

page currently resides in memory.

16.4 MEMORY MANAGEMENT BY SEGMENTATION:

Memory segmentation is the division of computer’s primary

memory into segments or sections. In a computer system using segmentation, a reference

to a memory location includes a value that identifies a segment and an offset within that

segment. Segments or sections are also used in object files of compiled programs when

they are linked together into a program image and when the image is loaded into

memory

16.5 VIRTUAL MEMORY ADDRESS TRANSLATION

In address translation, all programs and data are composed of fixed length units called

Pages. The Page consists of a block of words that occupy contiguous locations in the

main memory. The pages are commonly range from 2K to 16K bytes in length.

The cache bridge speeds up the gap between main memory and secondary storage and

it is implemented in software techniques. Each virtual address generated by the processor

contains virtual page number (Low order bit) and offset (High order bit)

Virtual Page number + Offset → this specifies the location of a particular byte (or

word) within a page.

216

Page Table:

It contains the information about the main memory address where the page is

stored and the current status of the page.

Page Frame:

An area in the main memory that holds one page is called the page frame.

Page Table Base Register:

It contains the starting address of the page table.

Virtual Page Number + Page Table Base register → Gives the address of the

corresponding entry in the page table i.e., it gives the starting address of the page if that

page currently resides in memory.

Control Bits in Page Table:

 The Control bits specify the status of the page while it is in main memory.

Function:

The control bit indicates the validity of the page, i.e. it checks whether the page is

actually loaded in the main memory. It also indicates that whether the page has been

modified during its residency in the memory; this information is needed to determine

whether the page should be written back to the disk before it is removed from the main

memory to make room for another page.

217

Page frame

Virtual address from processor

in memory

Offset

Offset

Virtual page numberPage table address

Page table base register

Control
bits

Physical address in main memory

PAGE TABLE

Page frame

+

Figure 16.2: Virtual Memory Address Translation

The Page table information is used by MMU for every Read and Write access.

The Page table is placed in the main memory but a copy of the small portion of the page

table is located within MMU. This small portion or small cache is called Translation

Look Aside Buffer (TLB). This portion consists of the page table entries that corresponds

to the most recently accessed pages and also contains the virtual address of the entry.

When the operating system changes the contents of page table, the control bit in

TLB will invalidate the corresponding entry in the TLB. Given a virtual address, the

MMU looks in TLB for the referenced page. If the page table entry for this page is found

in TLB, the physical address is obtained immediately. If there is a miss in TLB, then the

required entry is obtained from the page table in the main memory and TLB is updated.

When a program generates an access request to a page that is not in the main memory,

then Page Fault will occur. The whole page must be brought from disk into memory

before an access can proceed. When it detects a page fault, the MMU asks the operating

system to generate an interrupt.

218

No

Yes

Hit

Miss

Virtual address from processor

TLB

OffsetVirtual page number

number
Virtual page Page frame

in memory
Control

bits

Offset

Physical address in main memory

Page frame

=?

Figure 16.3: Use of Associative Mapped TLB

The operating System suspends the execution of the task that caused the page fault, and

then begins execution of another task whose pages are in main memory because the long

delay occurs while page transfer takes place. When the task resumes, either the

interrupted instruction must continue from the point of interruption or the instruction

must be restarted. If a new page is brought from the disk when the main memory is full, it

must replace one of the resident pages. In that case, it uses LRU algorithm which

removes the least referenced page.

A modified page has to be written back to the disk before it is removed from the

main memory. In that case, write – through protocol is used.

MEMORY MANAGEMENT REQUIREMENTS:

Memory management routines are part of the Operating system. Assembling the OS

routine into virtual address space is called ‘System Space’. The virtual space in which

the user application program resides is called the ‘User Space’. Each user space has a

separate page table.

219

The MMU uses the page table to determine the address of the table to be used in the

translation process. Hence by changing the contents of this register, the OS can switch

from one space to another. The process has two stages. They are User State and

Supervisor state.

User State:

 In this state, the processor executes the user program.

Supervisor State:

 When the processor executes the operating system routines, the processor will be

in supervisor state.

Privileged Instruction:

 In user state, some machine instructions cannot be executed. Hence a user

program is prevented from accessing the page table of other user spaces or system spaces.

The control bits in each entry can be set to control the access privileges granted to each

program. One program may be allowed to read/write a given page, while the other

programs may be given only read access.

16.6 SUMMARY

 In this unit, we have discussed a concept which is so very evident and

useful called the virtual memory concept. We explained very popular Memory

Management Techniques, namely, Paging and Segmentation. We also discussed about

Virtual Memory Address Translation.

Check your progress:

1. What do you mean by virtual memory concept?

2. What are Virtual Memory Techniques?

220

3. What is page table?

16.7 KEYWORDS

Virtual Memory,

16.8 ANSWERS TO CHECK YOUR PROGRESS

1. 16.1

2. 16.2

3. 16.3

16.8 UNIT-END EXERCISES AND ANSWERS

1. What is a virtual memory?

2. How is address translation done? Explain in detail.

3. Discuss the various memory management requirements in virtual memory

concept.

Answers: SEE

1. 16.2

2. 16.5

3. 16.5

16.9 SUGGESTED READINGS

Text Book:

Computer Organization – Carl Hamacher, ZvonkoVranesic, SafwatZaky, MGH

publications, Fifth Edition, 2002.

Reference Books:

Digital logic and computer design: Morris Mano, PHI, 23
rd

 Reprint, October 2000.

Ronald J Toci, Digital Systems – Principles and Applications, 5th edition, PHI. 1992

